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Abstract

Under most game-theoretic solution concepts, equilibrium beliefs are justified by off-

equilibrium events. I propose an equilibrium concept for infinitely repeated games, called

‘‘Nash Equilibrium with Tests’’ (NEWT), according to which players can only justify their

equilibrium beliefs with events that take place on the equilibrium path itself. In NEWT,

players test every threat that rationalizes a future non-myopic action that they take. The tests

are an integral part of equilibrium behavior. Characterization of equilibrium outcomes

departs from the classical ‘‘folk theorems’’. The concept provides new insights into the impact

of self-enforcement norms, such as reciprocity, on long-run cooperation.
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1. Introduction

Game-theoretic equilibrium concepts are typically based on a criterion by which
players justify their equilibrium beliefs of the opponents’ strategies. For example, in
subgame perfect equilibrium (SPE), the criterion is sequential rationality: player i

justifies his belief in player j’s threats with the argument that if player i had
(counterfactually) tested any of these threats, it would have been optimal for player j
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to realize them. Thus, players validate their equilibrium beliefs by invoking
counterfactual events that are never observed in equilibrium.
In this paper, I construct an equilibrium concept that requires players to justify

their equilibrium beliefs by events that take place on the equilibrium path itself. If a
player rationalizes his equilibrium actions by attributing threats to his opponent, he
seeks evidence for their existence in the actual equilibrium path. Threats must be
seen, in order to be believed.
I explore this idea in the context of two-player, infinitely repeated games with

discounting. The fundamental problem in repeated games is whether players can
sustain non-myopic behavior. A player takes a myopically inferior action only if he
can rationalize it with a threat of his opponent to punish him if he plays myopically.
According to the equilibrium concept that I propose, called ‘‘Nash Equilibrium with

Tests’’ (NEWT), this threat must be evident from the equilibrium path. Specifically,
the player must test any threat that rationalizes a non-myopic action that he takes
later in the course of the game. Both the tests and the optimal response are part of
equilibrium behavior: the player’s equilibrium strategy carries out both tasks.
The idea that players verify a threat by testing it first is intuitive. For example,

imagine a leader of one country, who faces an aggressive rival country in an ongoing
conflict over some territory. The leader believes that fighting, although costly in the
short run, is necessary for making the rival country soften its policy in the long run.
The leader validates this belief by trying to play dovishly first. This demonstrates the
futility of being dovish and helps justifying the fight. The modeling innovation in this
paper is to build threat testing into the definition of an equilibrium concept. A
strategy profile is unstable (in the sense of NEWT) if it leaves untested any of the
threats that rationalize the non-myopic actions taken along the play path.
As the example suggests, equilibrium threat testing fits situations in which players

need to justify their behavior to some audience. The player may be a delegate who
must account for his actions to a principal or a constituency. Alternatively, he may
have an internal need to respond to outside criticism. The player’s audience is not a
player in the game, and therefore need not share the player’s equilibrium knowledge
of the opponent’s off-path behavior. In order to persuade such an audience that a
threat exists, ‘‘empirical’’ evidence from the actual play path is more convincing than
counterfactual arguments about the opponent’s off-path behavior.
Because the notion of threat testing is central to the equilibrium concept, we need

a language to describe what it means for a player to test at one history the same

threat that he encounters at another history. I employ the formalism of finite
automata (see [6, Chapter 8]). A finite automaton is a ‘machine’ that consists of a
finite set of internal states (one of which is specified to be the initial state), an output
function (which specifies the player’s action when he is in a given state), and a
transition function (which determines his state at the next period, given his current
state and the opponent’s current action).
For every machine state q in the automaton si; let brjðqÞ denote player j’s stage-

game (‘‘myopic’’) best-reply to the action that player i takes when in the state q: Let
BRjðqÞ be the action prescribed for player j by long-run optimization against si; given

that player i is in q: If BRjðqÞabrjðqÞ—i.e., if the action prescribed by long-run
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optimization against q is myopically inferior—then the transition from q must be
different when j plays brjðqÞ or BRjðqÞ against q: In other words, there must be a

threat associated with q to punish j if he plays brjðqÞ; rather than BRjðqÞ; against q:

A profile of finite automata ðs1; s2Þ is a NEWT if for every i ¼ 1; 2; and every state
q in player i’s automaton: (i) if BRjðqÞabrjðqÞ; then along the path induced by

ðs1; s2Þ; player j plays brjðqÞ when he faces q for the first time, but past a certain

period, he plays BRjðqÞ whenever he faces q; (ii) if BRjðqÞ ¼ brjðqÞ; player j always

plays this action against q in the path induced by ðs1; s2Þ:
NEWT thus captures the idea that players test threats that rationalize their future

non-myopic actions, but do not depart from optimizing behavior for any other
purpose. If BRjðqÞabrjðqÞ; then playing BRjðqÞ against q can only be rationalized by

associating a threat (technically, a non-constant transition) with q: NEWT requires
player j to test this threat by playing myopically against q as soon as he faces this
state. In the long run, however, player j will adhere to the action prescribed by long-
run optimization against q: If BRjðqÞ ¼ brjðqÞ; there is no need to associate a threat

with q in order to rationalize BRjðqÞ: Therefore, NEWT requires player j to play

BRjðqÞ whenever he faces q: NEWT is not a refinement of Nash equilibrium (NE),

because it may require players to depart from optimizing with respect to their
equilibrium beliefs.
To make the concept of NEWT more concrete, imagine a scenario, in which each

player has to justify his behavior to an outside ‘‘referee’’. As the repeated game
unfolds, the referee may question the player’s rationale for his behavior at any period
t: If the player behaves non-myopically at period t; he answers to the query by stating
his belief of the opponent’s strategy, and rationalizing his move by the opponent’s
threat at that period. The referee will be satisfied with this reply only if the player
actually tested the threat before: otherwise, there is no evidence at period t for the
threat’s reality. If the player behaves myopically at t; the referee does not initiate a
debate about rationalizing threats, because the player does not need them to
rationalize his move at t: In NEWT, each player can successfully reply to all of his
referee’s queries.1

My main task in the paper is to analyze the restrictions on repeated-game behavior
implied by NEWT. I begin by characterizing equilibrium outcomes in a number of
restricted domains of stage games. Consider a stage game with a unique NE.
Suppose further that the NE also Pareto-dominates any other stage-game outcome. I
show that in such a game, only infinite repetition of the stage-game NE is consistent
with NEWT. (In contrast, SPE sustains non-myopic play patterns in this class of
games.) I find this departure from standard folk theorems quite attractive: when
individual and collective rationality imply the same outcome in the stage game, we
do not expect non-myopic behavior to emerge in the repeated game. In contrast to
this extreme selection result, a ‘‘NEWT folk theorem’’ holds for every n � n
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1Note that in this scenario, nothing prevents player i from communicating to his referee a false belief of

player j’s strategy, as long as it is consistent with the play path. In order to accommodate this possibility,

we should interpret sj as a consistent belief of player j’s strategy, rather than as his true strategy. I shall

ignore this distinction in the sequel.
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coordination game. The construction of equilibrium strategies illustrates how threat
testing can be incorporated into equilibrium behavior, by ‘‘adding a wrinkle’’ to a
simple structure, which sustains a Nash folk theorem.
Next, I turn from equilibrium outcomes to the structure of equilibrium strategies. A

structural restriction on equilibrium automata that is shared by all players in a
symmetric game can be viewed as a ‘‘norm of punishment’’. I analyze two natural
norms of punishment: a class of automata that display an element of reciprocal
behavior, and a class of ‘‘forgiving’’ trigger strategies. These norms do not constrain
long-run cooperation in NE, and are mildly restrictive under SPE. Under NEWT,
however, these norms impose severe restrictions on long-run cooperation. These
results shed some light on the way in which certain norms can facilitate or hamper
long-run cooperation.

2. An example

Let us introduce the equilibrium concept by way of a simple example. Let the stage
game be the following instance of ‘‘Chicken’’ and suppose that the discount factor is
close to one:

C D

C 4; 4 1; 5

D 5; 1 0; 0

In order to sustain infinite repetition of ðC;CÞ in the long-run, we must construct
strategies that contain threats to punish deviations. Consider the strategy for player
1, given a diagrammatic finite-automata representation as s1 in Fig. 1. Because C is a
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s1:

s2:

States    1 : q0 q1 q2 q0 q0 …
Actions 1 : C D C C C …
Actions 2 : D C D C C …
States    2 : r0 r1 r2 r1 r1 …

q0 q1 q2

r0 r1 r2

C

Fig. 1.
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myopically inferior action against itself, playing C against q0 is optimal for player 2

only because of player 1’s threat to punish player 2 if he plays D against q0: This

threat is represented by the D-transition from q0: If player 2’s automaton were
identical to s1; we would have a NE that sustains infinite repetition of ðC;CÞ: The
threats that rationalize the players’ cooperation would never be realized along the
equilibrium path, and therefore, this automata profile is not a NEWT.
Consider the automata profile ðs1; s2Þ given by Fig. 1. Given the stage game’s

payoff structure, br2ðq0Þ ¼ br2ðq2Þ ¼ D and br2ðq1Þ ¼ C: Given the discount factor,

playing always D against q0 yields a maximal discounted payoff of 11
3
; whereas

playing always C against q0 yields a discounted payoff of 4. Therefore, BR2ðq0Þ ¼ C:

Note that q1 and q2 have a constant transition—i.e., player 1’s continuation is

independent of the action that player 2 takes against q1 or q2: Therefore, myopic and
long-run optimization prescribe the same action for player 2 against each of these

states: BR2ðq1Þ ¼ br2ðq1Þ and BR2ðq2Þ ¼ br2ðq2Þ: Now turn to player 1’s br and BR

actions. First, br1ðr0Þ ¼ br1ðr2Þ ¼ C and br1ðr1Þ ¼ D: Given the discount factor,

playing always D against r1 yields a maximal discounted payoff of 3, whereas playing

always C against r1 yields a discounted payoff of 4. Therefore, BR2ðr1Þ ¼ C: Because

r0 and r2 have a constant transition, BR1ðr0Þ ¼ br1ðr0Þ and BR1ðr2Þ ¼ br1ðr2Þ:
We can now verify that ðs1; s2Þ is a NEWT. Consider player 2’s reaction to s1:

First, in the path induced by ðs1; s2Þ; player 2 plays myopically at period 1—the first

time that he faces q0—whereas in the long run (from period 4 onwards), he always

plays BR2ðq0Þ against q0: Second, player 2 always plays myopically against q1 and q2:
Now turn to player 1’s reaction to s2: First, he plays myopically at period 2—the first

time that he faces r1—whereas in the long run, he always plays BR1ðr1Þ against r1:

Second, player 1 always plays myopically against r0 and r2:
Thus, both players depart from optimizing behavior only for the sake of testing

the threats that rationalize the non-myopic actions that they take in equilibrium.
Starting at period 4, the players enter a cyclic phase, in which they carry out a
repeated-game NE. We can see that NEWT captures a ‘‘build-up’’ phase that
precedes Nash equilibria which sustain non-myopic behavior. All the threat testing
takes place during the build-up phase.

Note that player 2’s automaton ‘‘displays reciprocity’’ at the C-state r1: if player 1

plays aAfC;Dg against r1; player 2 plays a in the next period. Player 1’s automaton

violates this property: even if player 2 plays D against the C-state q2; player 1 plays C

in the next period. In Section 5, we will see that this is a general feature: in order to
sustain infinite long-run repetition of ðC;CÞ in repeated Chicken, at least one player
must refrain from displaying reciprocity at some C-state. According to NEWT, there
is a tension between long-run cooperation and reciprocal behavior in this game.

3. The equilibrium concept

I define the solution concept for two-player, infinitely repeated games with perfect
information and discounting. Let Ai denote the stage-game action set for player i:
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Let ui denote player i’s stage-game payoff function. Assume that uiðai; ajÞauiða0
i; ajÞ

for every ajAAj and ai; a0
iAAi: In particular, there is a unique stage-game best-reply

for player i against any action taken by player j: Define a�
i ¼ arg minai

maxaj

ujðai; ajÞ: That is, a�
i is the action that ‘‘minimaxes’’ player j:

As to repeated-game strategies, I consider only pure strategies with a finite

automata representation. An automaton is a quadruple ðQi; q0i ; fi; tiÞ; where: Qi is a

finite set of machine states; q0i is the initial state; fi : Qi-Ai is an output function,

which specifies the action taken by player i when he is in state qAQi; and ti :
Qi � Aj-Qi is a transition function, where tiðq; ajÞ specifies the state to which the

automaton switches from state qAQi when the opponent plays aj against q: We will

say that qAQi is an a-state if fiðqÞ ¼ a; and we will say that qAQi has a constant

transition if tiðq; ajÞ is the same for all ajAAj: Henceforth, si denotes an automaton

for player i:2

The path induced by ðs1; s2Þ is zðs1; s2Þ ¼ ðat
1; at

2Þt¼0;1;y; where at
iAAi is player i’s

action at period t; such that a0i ¼ fiðq0i Þ; a1i ¼ fi½tiðq0i ; a0j Þ
; etc. Player i’s discounted

payoff is ð1� dÞ
P

N

t¼0 d
tuiðat

i ; at
jÞ: Given ðs1; s2Þ; define a function pi : f0; 1;yg-Qi;

which depicts the evolution of player i’s machine state along z s1; s2ð Þ; where piðtÞ ¼ q

signifies that si is in the state q at period t:We will say that player j faces a state qAQi at
period t if piðtÞ ¼ q: A state qAQi is visited in zðs1; s2Þ if piðtÞ ¼ q for some t in zðs1; s2Þ:
It is known that a profile of finite automata induces a path that eventually enters a

cycle. That is, there exist a period t� and an integer L; such that piðtÞ ¼ piðt þ LÞ for
every i ¼ 1; 2; tXt�: In the sequel, t� always denotes the period in which the cyclic
phase of zðs1; s2Þ begins. The phase that precedes t� is referred to as the
‘‘introductory phase’’ of zðs1; s2Þ:
For every qAQi; denote brjðqÞ ¼ arg maxajAAj

uj½ fiðqÞ; aj 
: In words, brjðqÞ is

player j’s myopic best-reply action against q: In contrast, define BRjðqÞ as player j’s

long-run best-reply action against q—i.e., the action that long-run optimization
prescribes for player j whenever player i is in the state q: Let us ensure that BRjðqÞ is
a well-defined, single-valued function. By the assumption of discounting, finding a
best-reply to si is a Markovian decision problem with a well-defined set of solutions.
For every qAQi; there is a non-empty subset of actions A�

j ðqÞDAj; which long-run

optimization against si prescribes for player j at any history in which si is in the state
q:3 Let BRjðqÞ ¼ arg maxajAA�

j
ðqÞ uj½ fiðqÞ; aj
: That is, BRjðqÞ is the myopically

optimal action against q in A�
j ðqÞ:

Both BRjðqÞ and brjðqÞ are functions from Qi to Aj: Of course, both functions are

defined relative to a given si: Note that BRjðqÞabrjðqÞ only if the transition tiðq; 
Þ is
not constant. In this case, the threat associated with q is represented by the
transitions ti½q; aj
; ajaBRjðqÞ:
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2 In Fig. 1, s1 consists of: Q1 ¼ fq0; q1; q2g; f1ðq0Þ ¼ f1ðq2Þ ¼ C; f1ðq1Þ ¼ D; t1ðq0;CÞ ¼ q0; t1ðq0;DÞ ¼
q1; t1ðq1; 
Þ ¼ q2 and t1ðq2; 
Þ ¼ q0: In the same figure, s2 consists of: Q2 ¼ fr0; r1; r2g; f2ðr0Þ ¼ f2ðr2Þ ¼
D; f2ðr1Þ ¼ C; t2ðr0; 
Þ ¼ t2ðr2; 
Þ ¼ r1; t2ðr1;CÞ ¼ r1 and t2ðr1;DÞ ¼ r2:

3See [6, Chapter 9] for more details.
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We are now ready to formulate an equilibrium concept, which requires players to
test the threats that rationalize their non-myopic actions.

Definition 1. An automata profile ðs1; s2Þ is a Nash equilibrium with tests (NEWT) if
for every player iAf1; 2g; jai; and every state qAQi:

1. If BRjðqÞabrjðqÞ; then:
(a) at

j ¼ brjðqÞ at the earliest t in zðs1; s2Þ for which piðtÞ ¼ q:

(b) at
j ¼ BRjðqÞ at every tXt� in zðs1; s2Þ for which piðtÞ ¼ q:

2. If BRjðqÞ ¼ brjðqÞ; then at
j ¼ BRjðqÞ at every t in zðs1; s2Þ for which piðtÞ ¼ q:

The first condition in Definition 1 says that if the long-run best-reply action
against qAQi is non-myopic, then player j should play myopically when he faces q

for the first time, and play the long-run best-reply action against q in the long run.
The second condition says that if the myopic and long-run best-reply actions against
q coincide, player j should play this action whenever he faces q:
NEWT is an equilibrium concept, in which players validate their equilibrium

beliefs with events that take place on the equilibrium path itself. Playing non-
myopically can only be justified by a belief in a threat by the opponent to punish the
myopic move. The belief-selection criterion underlying NEWT is that this threat
must be evident from actual behavior. Therefore, the threat that justifies the non-
myopic move must be tested in equilibrium.
NEWT is not a refinement of NE. Every NEWT that involves non-myopic

behavior is sustained by threats that are tested in equilibrium. Testing a threat is
costly, hence players do not optimize with respect to their beliefs. Note, however,
that the cyclic phase of NEWT does constitute a repeated-game NE. In fact, every
NEWT ðs1; s2Þ can be transformed into a NE ðs01; s02Þ; where sj

0 is identical to sj except

that the initial state is pjðt�Þ instead of q0j :

Example. In Section 2, we have seen an example of NEWT in repeated Chicken. The
automata profile given by Fig. 2 is another example. Consider player 1’s reaction to s2:

His long-run best-reply actions are: BR1ðr0Þ ¼ C; BR1ðr1Þ ¼ D and BR1ðr2Þ ¼ D: Only

in the case of r2 do player 1’s myopic and long-run best-reply actions coincide. And

indeed, player 1 plays D against r0 at period 1 (the first time that he faces r0), and he

plays only C against r0 in the cyclic phase. He plays D against r2 whenever he faces it. He

plays C against r1 at period 2 (the first time that he faces r1). Since player 1 never faces r1

in the long run, condition 1(b) in Definition 1 is vacuously satisfied with respect to r1:

Turning to player 2’s reaction to s1; his best-reply actions are: BR2ðq0Þ ¼ C;

BR2ðq1Þ ¼ C and BR2ðq2Þ ¼ D: Only in the case of q0 do his myopic and long-run

best-reply actions coincide. And indeed, player 2 plays C against q0 whenever he

faces it. He plays D at period 2 (the first time that he faces q1), and he plays only C

against q1 in the cyclic phase. He plays C at period 3 (the first time that he faces q2).

Since player 2 never faces q2 in the long run, condition 1(b) in Definition 1 is

vacuously satisfied with respect to q2:
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Although in NEWT players depart from optimizing behavior, they do not
experiment arbitrarily with sub-optimal actions. Instead, NEWT assigns a special
status to the myopic best-reply actions. This is consistent with the justifiability-based
interpretation of NEWT expounded in the introduction. According to this
interpretation, NEWT captures a situation in which each player attempts to justify
his repeated-game behavior to some audience. Myopic moves can be rationalized
without attributing any threat to the opponent, whereas non-myopic moves can only
be rationalized by a threat. In this case, since the threat is essential to the player’s
justification, he must provide evidence for the threat from past behavior, in order to
convince his audience that the justification is sound.

Tests as ‘‘single deviations’’: I have identified a threat with a transition from a
machine state. Testing a threat amounts to playing myopically against a state,
without specifying the continuation. In other words, a test is like a ‘‘single
deviation’’. Alternatively, one could identify a threat with a sequence of transitions.
In this case, testing a threat would consist of ‘‘multiple deviations’’ that extend over a
number of periods. I find the notion of a test as a single deviation more natural.

High-order threats: In the NEWT given by Fig. 2, q2 is visited only because player

2 tests the threat associated with q1: Similarly, r1 is visited only because player 1 tests

the threat associated with r0: If player 2 always played BR2ðq1Þ against q1; q2 would

not be reached and player 2 would not face the threat associated with q2:

Nevertheless, since BR2ðq2Þabr2ðq2Þ; NEWT requires player 2 to test the threat

associated with q2 by playing br2ðq2Þ when he faces q2 for the first time. We can see
that in NEWT, players have to test every threat that rationalizes a non-myopic
action that they take, even if the threat is faced only as a result of testing another
threat. I refer to such a threat as a ‘‘high-order threat’’.

Exact vs. full automata: Definition 1 relies on the formalism of exact automata—
i.e., ti conditions only on player i’s current state and player j’s current action. By
contrast, a full automaton would also condition on player i’s current action. The
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restriction to exact automata entails no loss of generality, because NEWT does not
deal with behavior off the equilibrium path. One could re-define NEWT in terms of
full automata, but this would only complicate notation. Later in the paper, when we
compare the predictions of NEWT and SPE, the comparison is well-defined only if
both concepts are defined in terms of full automata.

4. Analysis

Let us begin our analysis of NEWT with a simple existence result.

Proposition 1. A NEWT exists if and only if the stage game possesses a pure-strategy

NE.

Proof. Suppose that the stage game possesses a pure-strategy NE ða1; a2Þ: The
following automata profile is a NEWT in the repeated game. Player i’s automaton
consists of a single state qi satisfying fiðqiÞ ¼ ai: Since BRjðqiÞ ¼ brjðqiÞ; only

condition 2 in the definition of NEWT is relevant. And indeed, at
j ¼ brj½piðtÞ
 for

every player i ¼ 1; 2; jai; and every period t along zðs1; s2Þ:
Now suppose that the stage game does not possess a pure-strategy NE. Then,

a1j abrj½pið1Þ
 for some player j: Either brj½pið1Þ
 ¼ BRj½pið1Þ
; in which case

condition 2 in Definition 1 is violated, or brj ½pið1Þ
aBRj½pið1Þ
; in which case

condition 1(a) in Definition 1 is violated. &

An immediate corollary of Proposition 1 is that in every NEWT, ða11; a12Þ is a stage-
game NE. Players play myopically at the beginning of the game, and they may
develop a non-myopic play pattern later.
Let us turn to the task of characterizing equilibrium outcomes. The standard folk

theorems will provide a natural benchmark. Consider, for example, the following
stage game:

A B

A 3; 3 1; 1

B 1; 1 0; 0

Every discounted-payoff profile above (1,1) is SPE-sustainable.4 This is a
particularly unattractive prediction, given that ðA;AÞ is implied by individual as
well as collective rationality in the stage game.

Proposition 2. Suppose that the stage game has a unique NE ða; aÞ: Suppose further

that ða; aÞ Pareto-dominates any other stage-game outcome. Then, only infinite

repetition of ða; aÞ is consistent with NEWT.
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R. Spiegler / Journal of Economic Theory 121 (2005) 214–235222



Proof. Suppose, contrary to the claim, that there exists a NEWT that induces non-
myopic behavior. Because ða; aÞ is the unique stage-game NE, Proposition 1 implies

that a11 ¼ a12 ¼ a: Let t denote the earliest period in zðs1; s2Þ; for which ðat
1; at

2Þ is not a
stage-game NE. Then, t41 and ak

1 ¼ ak
2 ¼ a for every kot: Because at

jabrj½piðtÞ
 for
at least one player j; by NEWT there is a period kot; such that piðkÞ ¼ piðtÞ: If at

jaa

for both j ¼ 1; 2; then ak
i aa for some player i; a contradiction.

It follows that exactly one player, say player 2, plays a at period t:Moreover, there

exists a period kot; such that p2ðkÞ ¼ p2ðtÞ and ak
1 ¼ a: By definition of k and t;

al
1 ¼ al

2 ¼ a whenever kolot: Thus, player 1 plays a against p2ðtÞ at some kot;
both players subsequently play a repeatedly, until player 2’s automaton returns to
p2ðtÞ at period t: Since ða; aÞ is the best outcome in the game for player 1,
BR1½p2ðtÞ
 ¼ a: But this means that player 1’s move at period t violates condition 2
in Definition 1. &

Thus, NEWT effects a departure from the standard folk theorems. The departure is
in an intuitive direction: when individual and collective rationality unequivocally
favor the same outcome in the stage game, we should not expect non-myopic
behavior to emerge in the repeated game.
To see why NEWT confirms this intuition, recall the ‘‘referee scenario’’ described

in the introduction. In the early stages of the game, players play ða; aÞ until some
period t; in which player 1, say, switches to some other action b while player 2
continues to play a: At that period, player 1’s referee may ask him to explain his
move. Player 1 faces the following predicament. Because b is not myopically optimal
against a; he must rationalize it by attributing a threat to player 2. On one hand, if
player 1 did not test the threat prior to period t; the referee is not convinced by his
story. On the other hand, if he tested the threat, he merely showed that a is the
optimal action in that situation, because the ‘‘punishment’’ was a repeated play of
ða; aÞ; which is the best outcome in the game for player 1. Either way, player 1 is
unable to convince the referee that his move at period t was sound.
I am unable to provide a complete characterization of equilibrium outcomes for

arbitrary stage games. The next result, however, establishes a ‘‘folk theorem’’ for a
restricted domain. A stage game is a coordination game if for every player i and every
aAAi; ðai; brjðaiÞÞ is a NE. Our next result shows that a ‘‘NEWT folk theorem’’

holds for every coordination game.

Proposition 3. Every individually rational discounted payoff profile in a repeated

coordination game can be approximated (arbitrarily closely) by some NEWT, provided

that the discount factor is sufficiently close to one.

Proof. Consider a cycle (of length L) of action profiles ðal
1; al

2Þl¼1;y;L; which sustains

a profile of discounted payoffs that exceed each player’s min–max level, when
the discount factor is sufficiently close to one. Within the cycle, let

ððak1
1 ; ak1

2 Þ;y; ðakm

1 ; akm

2 ÞÞ; 1pmpL; be a sub-sequence of action profiles which do

not constitute a stage-game NE. Because the stage game is a coordination game,
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neither player plays myopically at any of these m periods. It will be notationally

convenient to assume that ki ¼ i for every i ¼ 1;y;m; i.e., that ðak
1 ; ak

2Þ is a stage-

game NE for every k ¼ m þ 1;y;L: If the discount factor is sufficiently close
to one, this re-ordering of the cycle does not affect any of the arguments in the
proof.
Let us construct an automata profile ðs1; s2Þ that induces this cycle in the cyclic

phase of zðs1; s2Þ: For every player i ¼ 1; 2; partition Qi into three non-empty
subsets: Qi ¼ QCi,QPi,QTi: We will design the automata, such that: QCi will be
the set of states that are visited in the cyclic phase of zðs1; s2Þ; QPi will be the set of
states that carry out punishments for player j’s deviations from his cyclic play
pattern; and QTi will be the set of states that are responsible for testing player j’s
threats. Let us now describe the outputs and transitions of these different classes of
states. We will begin by specifying the elements that are common to both players. We
will then complete the description by specifying the elements that are idiosyncratic to
each player. In the sequel, let qci; qpi and qci denote a typical ‘‘cyclic’’,
‘‘punishment’’ or ‘‘testing’’ state, respectively.

The ‘‘cyclic’’ states ðQCiÞ: Let QCi ¼ fqc1i ;y; qcL
i g: For every k ¼ 1;y;L;

let fiðqck
i Þ ¼ ak

i : For every k ¼ 1;y;m; tiðqck
i ; ak

j Þ ¼ qckþ1 mod L
i ; and tiðqck

i ; ajÞ ¼
qpiðk; 1Þ for every ajaak

j : (The state qpiðk; 1Þ belongs to QPi; and its precise

definition is given below.) For every k ¼ m þ 1;y;L; let tiðqck
i ; 
Þ ¼ qckþ1 mod L

i :
The interpretation of this part of the construction is as follows. The set of states

QCi is responsible for carrying out player i’s cyclic play pattern. He cycles through
QCi as long as player j adheres to his own cyclic play pattern. If player j deviates at
one of the first m periods in the cycle, player i’s automaton switches to a
‘‘punishment’’ state. Player i does not punish player j for deviations during the last
L � m periods of the cycle.

The ‘‘punishment’’ states ðQPiÞ: Let us partition QPi into m subsets: QPi ¼
QP1

i ,?,QPm
i : Let QPk

i ¼ fqpiðk; 1Þ;y; qpiðk;Nk
i Þg; Nk

i X1; for every k ¼
1;y;m: For every l ¼ 1;y;Nk

i ; let fi½qpiðk; lÞ
 ¼ a�
i : For every l ¼ 1;y;Nk

i � 1;

let ti½qpiðk; lÞ; 

 ¼ qpiðk; l þ 1Þ: For every kom; let ti½qpiðk;Nk
i Þ; 

 ¼ qckþ1

i : (The
specification of ti½qpiðk;Nm

i Þ; 

 is different for each player, and will be given below.)

The interpretation of this part of the construction is as follows. The set of states
QPi is responsible for punishing player j for deviating from his cyclic play pattern.

The number Nk
i is the duration of the punishment that player i inflicts on player j for

having failed to play ak
j against one of the first m � 1 ‘‘cyclic’’ states qck

i : When the

punishment ends, player i’s automaton proceeds to the ‘‘next’’ cyclic state, qckþ1
i : As

we shall see below, the case of k ¼ m requires some qualification.
The ‘‘testing’’ states ðQTiÞ: Let us partition QTi into m subsets:

QTi ¼ QT1
i ,?,QTm

i : Let QTk
i ¼fqtiðk; 0Þ; qtiðk; 1Þ;y; qtiðk;Nk

j Þg; for every k ¼
1;y;m: Let fi½qtiðk; 0Þ
 ¼ briðak

j Þ: For every l ¼ 1;y;Nk
j ; let fi½qtiðk; lÞ
 ¼ briða�

j Þ:
For every l ¼ 1;y;Nk

j � 1; let ti½qtiðk; lÞ; 

 ¼ qtiðk; l þ 1Þ: For every k ¼ 1;y;m � 1;

let ti½qtiðk;Nk
j Þ; 

 ¼ qtiðk þ 1; 0Þ: As to the case of k ¼ m; let ti½qtiðm;Nm

j Þ; 

 ¼ qc1i :
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The interpretation of this part of the construction is as follows. The set of states
QTi carries out the threat testing. For every k ¼ 1;y;m; the state qtiðk; 0Þ is

responsible for playing myopically against the ‘‘cyclic’’ state qck
j in player j’s

machine. The next Nk
j states are responsible for playing myopically against player j’s

min–max action during the Nk
j periods of punishment. Subsequently, player i plays

myopically against qckþ1
j ; etc. After all the testing states are visited, player i’s

machine switches to its first ‘‘cyclic’’ state, qc1i :
The description so far holds for both players. The difference between s1 and s2

consists in the initial state q0i ; as well as in the state that precedes the first testing state

qtið1; 0Þ: Complete the description of s1 by setting q01 ¼ qc11 and t1½qp1ðm;Nm
1 Þ; 

 ¼

qt1ð1; 0Þ: Complete the description of s2 by setting q02 ¼ qt2ð1; 0Þ and

t2½qp2ðm;Nm
2 Þ; 

 ¼ qc12: In words, the testing states in player 1’s machine appear

right after the last sequence of punishment states. In contrast, the testing states in
player 2’s machine appear right at the beginning.

In order to conclude the construction, it remains to determine the Nk
i ’s. For every

k ¼ 1;y;m � 1—and in the case of i ¼ 2; also for k ¼ m—if player j plays ajaak
j

against qck
i ; he is punished, in the form of being ‘‘min–maxed’’ for Nk

i periods. After

the punishment is over, player i’s machine switches to a ‘‘cyclic’’ state. Because the
cycle generates a payoff that lies strictly above player j’s min–max level, there exists a

number N�; such that if Nk
i 4N�; the punishment is deterring. It is only in the case of

i ¼ 2 and k ¼ m; that player i’s machine does not switch to a ‘‘cyclic’’ state
immediately after the punishment is over. However, if Nm

1 is sufficiently high, there

are enough a�
1-states in this punishment phase to ensure that the punishment is

deterring. In this way, we have guaranteed that for every k ¼ 1;y;m; ak
j ¼

BRjðqck
i Þ: For every k ¼ m þ 1;y;L; ak

j ¼ brjðak
i Þ and qck

i has a constant

transition, hence ak
j ¼ BRjðqck

i Þ:
Finally, let us verify that ðs1; s2Þ is a NEWT. By construction, each player i cycles

through QCi in the cyclic phase of zðs1; s2Þ: As we have seen, ak
j ¼ BRjðqck

i Þ for every
k ¼ 1;y;L: Thus, players stick to the long-run best-reply actions in the cyclic phase.

Now consider the introductory phase of zðs1; s2Þ: For every k ¼ m þ 1;y;L; qck
i

remains unvisited in this phase. For every k ¼ 1;y;m; qck
i is visited exactly once in

the introductory phase, and player j plays brjðqck
i Þ on that occasion. Finally, all the

states in QPi and QTi have a constant transition, and by construction, player j

always plays myopically against them. It follows that ðs1; s2Þ is a NEWT. &

Fig. 3 illustrates the construction in the context of a symmetric stage game. It

displays a NEWT that sustains a two-period cycle ðða11; a12Þ; ða21; a22ÞÞ; where neither
outcome is a stage-game NE. The structure of equilibrium strategies ‘‘adds a
wrinkle’’ to a simple construction, which sustains a Nash folk theorem. In the basic
construction, si punishes deviations from the cyclic play pattern, by playing the min–
max action a� for some finite number of periods (which is independent of player j’s
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behavior while being punished). When the punishment is over, si switches to some
‘‘cyclic’’ state.5

The variation on this basic construction consists in adding a sequence of constant-
transition states to each player’s automaton. These states are responsible for testing
the opponent’s threats. The states are placed in each player’s machine in such a way
that in equilibrium, player 1 starts testing player 2’s threats only after player 2 has
finished all his tests. When player 1 finishes his tests, the players proceed to the cyclic
phase, in which they carry out a repeated-game NE.6

Proposition 3 demonstrates that the strong selection result given by Proposition 2
hinges on the uniqueness of the stage-game NE. For example, in a common-interest
coordination game, there is a NE which Pareto-dominates all other stage-game
outcomes. However, because there are other NE in the stage game, it is possible to
sustain individually rational, inefficient outcomes.
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Fig. 3.

5 In Fig. 3, a box with K 
 a written inside stands for a sequence of K consecutive a-states with a constant

transition.
6Fig. 1 provides another, particularly simple example for the construction. Using the notation of the

proof of Proposition 3: m ¼ L ¼ 1; QC1 ¼ fq0g; QP1 ¼ |; QT1 ¼ fq1; q2g; QC2 ¼ fr1g; QP2 ¼
fr2g; QT2 ¼ fr0g; and M1

1 ¼ M1
2 ¼ 1: (The only difference from the construction given in the proof is

that QP1 is empty.)
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The relative simplicity of the construction of Proposition 3 owes to our focus on
coordination games. Suppose that as part of the construction, we need player j to

test a threat associated with some ‘‘cyclic’’ state qAQC
i : Then, at some period t;

player j plays brjðqÞ against q: Because we are dealing with a coordination game,

ðat
1; at

2Þ is necessarily a stage-game NE. Therefore, it is possible to incorporate player
j’s test into the play path without adding a new threat to player j’s machine. Such a
construction becomes infeasible when the stage game is not a coordination game.
However, in the context of symmetric 2� 2 stage games, it can be shown that a

‘‘NEWT folk theorem’’ holds for the class of games not covered by Propositions 2
and 3. (This is essentially PD, except that the dominant-strategy equilibrium need
not be inefficient.) The construction is quite similar to the one given in Proposition 3,
only somewhat more complicated because it now involves high-order threats (non-
cyclic states with a non-constant transition), in order to overcome the difficulty
described in the previous paragraph. Because of the limited scope of this ‘‘folk
theorem’’ and for the sake of brevity, I omit the proof. At any rate, this finding
completes the characterization for symmetric 2� 2 games: except for the games
covered by Proposition 2, a folk theorem holds for every stage game in this class.

5. Long-run cooperation: the role of norms

Section 4 examined the set of outcomes that emerge under NEWT. The focus of
this section is on the structure of equilibrium strategies. Specifically, I examine how
certain restrictions on the structure of equilibrium strategies affect the sustainability
of mutually beneficial outcomes. I use the term ‘‘norm of punishment’’ to describe a
structural restriction on strategies that is shared by all players in a repeated game.
These structural restrictions are meant to capture, in a stylized way, self-enforcement
that we observe in real-life repeated interactions.
Let us restrict attention to symmetric stage games (i.e., A1 ¼ A2 ¼ A and

u1ða; bÞ ¼ u2ðb; aÞ). Recall that a� denotes the min–max action in the game. Assume

that there exists an action a0AA; a0aa�; such that brða0Þaa0 (hence, ða0; a0Þ is not a
stage-game NE), yet uða0; a0Þ exceeds the min–max payoff. Infinite repetition of

ða0; a0Þ thus has some amount of social desirability. For example, in PD and

Chicken, a� ¼ D and a0 ¼ C: Let uða0; a0Þ ¼ M and normalize uðbrða0Þ; a0Þ ¼
M þ 1: If a NEWT sustains infinite repetition of ða0; a0Þ in the cyclic phase, I will say
that it ‘‘sustains long-run cooperation’’. The problem I study in this section is
whether certain norms of punishment are consistent with long-run cooperation,
under NEWT.

5.1. Reciprocity

Reciprocity is a familiar and intuitive norm of punishment in repeated games.
Game theorists’ interest in reciprocal behavior intensified in the wake of Axelrod’s
famous PD tournaments [1]. In a tournament designed to mimic an evolutionary
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environment, the Tit-for-Tat automaton emerged as a ‘‘winner’’.7 Theoretical works
on reputation effects in repeated PD [5,9] relied on Tit-for-Tat as a ‘‘crazy type’’,
whose presence facilitates cooperation. This sub-section examines a weaker notion of
reciprocity, which requires players to display reciprocal behavior only in some
situations.

Definition 2. In a repeated symmetric game, an automaton s displays reciprocity at

a0-states if whenever f ðqÞ ¼ a0; f ½tðq; aÞ
 ¼ a for every aAA:

Reciprocity at a0-states is a norm that requires players to display reciprocal

behavior only when they are in a state whose output is a0: Player 2’s automaton in
Fig. 1 and player 1’s automaton in Fig. 2 display reciprocity at C-states, whereas
player 1’s automaton in Fig. 1 and player 2’s automaton in Fig. 2 violate this
property.
In every symmetric game that falls into the category presented at the beginning of

this section, it is possible to sustain infinite repetition of ða0; a0Þ in NE, using

automata that display reciprocity at a0-states. The same holds under SPE, if

uða0; a0Þ ¼ M is sufficiently large (provided that we employ full, rather than exact
automata).

In contrast, we shall see that the implications of reciprocity at a0-states on the

NEWT-sustainability of long-run cooperation depends on whether ðbrða0Þ; brða0ÞÞ
or ðbrða0Þ; a0Þ is a stage-game NE.8 The NEWT’s given by Figs. 1 and 2 sustain long-
run cooperation in repeated Chicken. In Fig. 1(2), only s2 (s1) displays reciprocity at
C-states. The violation of this notion of reciprocal behavior turns out to be necessary
for sustaining long-run cooperation in a class of stage games, of which Chicken is an
instance.

Proposition 4. Consider a symmetric stage game, in which ða0; brða0ÞÞ and ðbrða0Þ; a0Þ
are NE. Fix uða; bÞ for every a; baa0; brða0Þ: There exists M�; such that for every

M4M�; if a NEWT ðs1; s2Þ induces at
1 ¼ at

2 ¼ a0 for every tXt�; then s1 or s2 do not

display reciprocity at a0-states.

Proof. By assumption, at
1 ¼ at

2 ¼ a0 for every tXt� along zðs1; s2Þ: Denote brða0Þ ¼
b: Because baa0; there must be a period tot� for every player j ¼ 1; 2; in which

piðtÞ ¼ piðt�Þ and at
j ¼ b: Because si displays reciprocity at piðtÞ; atþ1

i ¼ b: Let k be

the latest period along zðs1; s2Þ; at which any of the players (suppose that it is player 1,
without loss of generality) plays b: Suppose that ak

2 ¼ a0: Then, because s2 displays
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and only if a ¼ C:
8Recall that by our assumptions on payoffs, every stage-game NE is strict. Hence, no more than one of

these outcomes can be a stage-game NE.
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reciprocity at p2ðkÞ; akþ1
2 ¼ b; contradicting the definition of k: It follows that

ak
2aa0: We have established the existence of a period in the play path, in which one

player plays b while the other player plays aaa0:
Let t denote the earliest period in which any of the players (suppose that it is

player 1, without loss of generality) plays b; while his opponent plays aaa0: By our
assumption on the stage game’s payoff structure, neither player plays myopically at
period t: By NEWT, there must exist a period hot; for which p1ðhÞ ¼ p1ðtÞ and

ah
2 ¼ a0: If at

2 ¼ b; then there also exists a period lot; lah; for which p2ðlÞ ¼ p2ðtÞ
and al

1 ¼ a0: In this case, let hol; without loss of generality.

Because player 2 displays reciprocity at p2ðhÞ; ahþ1
2 ¼ b: If h þ 1 ¼ t; then at

2 ¼ b;

and this contradicts the existence of a period l between h and t; in which p2ðlÞ ¼ p2ðtÞ
and al

1 ¼ a0: Therefore, h þ 1ot: By the definition of t; ahþ1
1 ¼ a0: Because s1

displays reciprocity at a0-states, it follows that player 2 could play a0 against p1ðtÞ;
and guarantee a continuation consisting of infinite repetition of ða0; a0Þ: If M is
sufficiently large, this is the best continuation that is feasible for player 2, given that

s1 displays reciprocity at a0-states. (The reason is that the maximal stage-game

payoff against a0 is M þ 1; and the maximal stage-game payoff against any aaa0 is

lower than M � 1; when M is sufficiently large.) Therefore, because a0 ¼
br2½p1ðtÞ
; a0 ¼ BR2½p1ðtÞ
 if M is sufficiently large. By NEWT, player 2 should

always play a0 against p1ðtÞ: His behavior at period t violates NEWT. &

Thus, the norm of reciprocity at a0-states rules out the long-run sustainability of

ða0; a0Þ; when ða0; brða0ÞÞ is a stage-game NE and uða0; a0Þ is sufficiently high

(relative to uða; bÞ; for all a; baa0). To see the intuition for this result, consider the
problem of sustaining long-run repetition of ðC;CÞ in repeated Chicken. Reciprocity
at C-states implies that the build-up phase must contain a ‘‘war’’: a period t in which
both players play ðD;DÞ: In Chicken, ðD;DÞ is not a NE. Therefore, each player has
to justify his behavior in t with a test. However, these tests turn out to generate
another war, which triggers further tests, etc. Reciprocity at C-states is a norm that
generates ‘‘too many’’ tests in the build-up phase, and thus obstructs cooperation
altogether.9

By contrast, consider the following example. Let the stage game be PD, with
2 
 u1ðC;CÞ4u1ðC;DÞ þ u1ðD;DÞ: The automata profile given by Fig. 4 is a NEWT.

First, consider player 2’s reaction to s1: (i) BR2ðq0Þ ¼ BR2ðq2Þ ¼ C; a myopically

dominated action; player 2 should play D when he faces qi for the first time, and play

only C whenever he faces qi in the cycle, which is indeed the case; (ii) BR2ðq1Þ ¼ D; a

myopically dominant action; player 2 should play D whenever he faces q1; which is

indeed the case. Now turn to player 1’s reaction to s2: (i) BR1ðr1Þ ¼ BR1ðr2Þ ¼ C;

player 1 should play D when he faces ri for the first time, and play only C whenever
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 ½uðD;CÞ þ uðC;DÞ
: This is exactly the value of uðC;CÞ that

makes infinite repetition of ðC;CÞ socially superior to any other symmetric repeated-game payoff profile.

R. Spiegler / Journal of Economic Theory 121 (2005) 214–235 229



he faces ri in the long run, which is indeed the case; (ii) BR1ðr0Þ ¼ D; player 1 should

play D whenever he faces r0; which is indeed the case.
In this equilibrium, both s1 and s2 display reciprocity at C-states. Long-run

cooperation in this equilibrium is ‘‘built up’’ over an introductory phase which lasts
five periods.
The construction of Fig. 4 can easily be adapted to any symmetric stage game in

which ðbrða0Þ; brða0ÞÞ is a NE, as long as M is sufficiently large. The output functions

should be modified by replacing C with a0 and D with brða0Þ: The transition

functions should be modified by replacing C with a0; D with brða0Þ; and for every

action aaa0; brða0Þ; the transitions tiðq; aÞ should be set to be equal to ti½q; brða0Þ
:
Indeed, the next result shows that this adapted construction yields the shortest
cooperation build-up phase that is possible under NEWT in any symmetric stage

game for which ðbrða0Þ; brða0ÞÞ is a NE.

Proposition 5. Consider a symmetric stage game, in which ðbrða0Þ; brða0ÞÞ is a NE. Fix

uða; bÞ for every a; baa0; brða0Þ: If NEWT ðs1; s2Þ sustains cooperation and players are

sufficiently patient, then t�X6:

Proof. Denote brða0Þ ¼ b: Because baa0; NEWT implies that for both j ¼
1; 2; iaj; BRj½piðt�Þ
 ¼ a0 and there exists a period tjot�; such that piðtjÞ ¼ piðt�Þ
and a

tj

j ¼ b: Moreover, tjat� � 1; otherwise, player j can guarantee, by playing

brða0Þ against piðt�Þ; a continuation consisting of infinite repetition of ða0; a0Þ; hence
a0 cannot be the best-reply action against piðt�Þ; a contradiction.
Since brðbÞ ¼ b; NEWT implies that for both j ¼ 1; 2; there exists a period kjotj ;

such that pjðkjÞ ¼ pjðtjÞ and a
kj

i ¼ b: It follows that t�X5: Suppose that t� ¼ 5: Then,
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k1 ¼ k2 ¼ 1 and the path must be as follows (assuming t14t2; without loss of
generality):

Period 1 2 3 4 5 6 y

Player 1 b a0 b b1 a0 a0 y

Player 2 b b a0 b2 a0 a0 y

where b1; b2aa0: Note that p1ð1Þ ¼ p1ð3Þ and p1ð2Þ ¼ p1ðt�Þ: Suppose that
BR2½p1ð1Þ
ab: Then, if player 2 plays b against p1ðt�Þ; there is a continuation
action plan for him (playing BR2½p1ð1Þ
 against p1ð1Þ; and then repeatedly playing
BR2ðqÞ against every qAQ1 subsequently reached), which yields a higher discounted
payoff than M (as long as player 2 is sufficiently patient). But, this contradicts the

condition that a0 ¼ BR2½p1ðt�Þ
: It follows that BR2½p1ð1Þ
 ¼ b: Therefore, player 2’s
behavior at period 3 violates condition 2 in Definition 1. &

Proposition 5 implies that reciprocity at a0-states is a ‘‘good norm’’ for sustaining

long-run repetition of ða0; a0Þ; for a class of stage games that includes PD. The norm
is ‘‘good’’ in the sense that the build-up phase is the shortest possible under NEWT.
Thus, according to NEWT, the same norm that supports cooperation in ‘‘PD-like’’
games obstructs cooperation in ‘‘Chicken-like’’ games. This is a distinction that
emerges under NEWT, and not under standard solution concepts.
The intuition for this difference between ‘‘PD-like’’ and ‘‘Chicken-like’’ games is

as follows. In both classes of games, reciprocity at a0-states generates periods in

which one player plays brða0Þ; while the other player plays some action aaa0: In a

stage game like PD, in which ðbrða0Þ; brða0ÞÞ is a NE, such a period need not trigger

any further tests. In contrast, in a stage game like Chicken, in which ða0; brða0ÞÞ is a
NE, such periods necessarily have to be justified by tests. Thus, reciprocity at a0-
states generates more threat testing in the latter class of games than in the former.

5.2. Forgiving trigger strategies

Trigger strategies are among the simplest norms of punishment in repeated games.
A ‘‘trigger strategy’’ punishes a deviating player by ‘‘min–maxing’’ him for a number
of periods. In a ‘‘grim’’ trigger strategy, the punishment phase is infinitely long.
Clearly, grim strategies are incapable of sustaining cooperation in NEWT, because
the players’ tests trigger the grim threats as soon as they face them. Thus, in the
context of NEWT, the trigger strategy must satisfy some form of ‘‘forgivingness’’ in
order to sustain cooperation. In a ‘‘forgiving’’ trigger strategy, the punishment phase
has finite duration, and when it is over, the punishing player resumes ‘‘business as
usual’’.

Definition 3. A automaton si ¼ ðQi; q0i ; fi; tiÞ in a repeated symmetric game is a

‘‘forgiving trigger strategy’’ if for every state qAQi for which tiðq; 
Þ is non-constant,
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there is a sequence of states ðq0;y; qmðqÞþ1Þ mðqÞX0; such that:

1. q0 ¼ qmðqÞþ1 ¼ q;

2. q1 ¼ tiðq; ajÞ for every ajaBRjðqÞ:
3. For every n such that 0onomðqÞ þ 1; fiðqnÞ ¼ a� and tiðqn; aÞ ¼ qnþ1 for every

aAAj:

Forgiving trigger strategies consist of ‘‘normal’’ states and ‘‘punishment’’ states.
When player j plays an action aaBRjðqÞ against a normal state qAQi with a non-

constant transition tiðq; 
Þ; player i plays a� for mðqÞX0 periods. At the end of this
punishment phase, player i’s automaton returns to q—i.e., the same ‘‘situation’’ in
which the original deviation took place.10 For instance, the automaton s2 in Fig. 1 is

a forgiving trigger strategy, with mðr1Þ ¼ 1: Likewise, the automaton s1 in Fig. 3 is a

forgiving trigger strategy, with mðq0Þ ¼ 0 and mðq2Þ ¼ 1: Thus, the two main
features of punishments in forgiving trigger strategies are: (i) the punishment purely
consists of min–maxing the opponent, and (ii) the punishment’s duration is
independent of the deviant player’s behavior while being punished.
Forgiving trigger strategies do not impose any restrictions on the ability to sustain

cooperation under NE. (We only need to make sure that the mðqÞ’s are sufficiently
high.) Under SPE, forgiving trigger strategies (when formulated as full automata)
can sustain cooperation if ða�

1; a�
2Þ is a stage-game NE, as in PD. It turns out that

under NEWT, this norm of punishment obstructs long-run cooperation in any game.

Proposition 6. There exists no NEWT in forgiving trigger strategies that sustains long-

run cooperation in any repeated symmetric game.

Proof. Assume the contrary. Let ðs1; s2Þ be a NEWT in forgiving trigger strategies,

such that at
1 ¼ at

2 ¼ a0 for every tXt�: By assumption, a0abrða0Þ: Therefore, NEWT

requires that for every player j and every period tXt�: (i) a0 ¼ BRj½piðtÞ
; (ii) there
exists a period tjot� in zðs1; s2Þ; such that piðtjÞ ¼ piðtÞ and a

tj

j aa0: For every player

j; let kj denote the latest such period. Clearly, k1ak2: Without loss of generality, let

k14k2: Observe that by our definition of a� and a0; a�aa0:
Let us show that m½p2ðk1Þ
40: Assume the contrary and suppose that m½p2ðk1Þ
 ¼

0: Then, p2ðk1 þ 1Þ ¼ p2ðk1Þ: Recall that p2ðk1Þ ¼ p2ðtÞ for some tXt�; and

BR1½p2ðtÞ
 ¼ a0: But if player 1 can force, by playing brða0Þ against p2ðk1Þ; infinite
repetition of ðbrða0Þ; a0Þ; then a0aBR1½p2ðtÞ
; a contradiction. It follows that

m½p2ðk1Þ
40; hence ak1þ1
2 ¼ a�:

Let h denote the latest period t0Afk2; k2 þ 1;y; k1g; for which p1ðt0Þ ¼ p1ðtÞ for
some tXt�: By the definition of k2; there exists such a period h: Moreover, since

ak1
1 ¼ brða0Þaa0; hok1: If ah

2 ¼ a0; then p1ðh þ 1Þ ¼ p1ðt þ 1Þ; contradicting the
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definition of h: Therefore, ah
2aa0: If m½p1ðhÞ
 ¼ 0; then p1ðh þ 1Þ ¼ p1ðhÞ: But once

again, this contradicts the definition of h: Therefore, m½p1ðhÞ
40: By the structure of
forgiving trigger strategies, player 1 plays a� repeatedly immediately after period h

for a number of periods, before returning to p1ðhÞ: By the definition of h; player 1
returns to p1ðhÞ only after period k1: If he returns to p1ðhÞ at period k1 þ 1; we obtain
a contradiction with the definition of k1; because we have established that player 2

plays a�aa0 at period k1 þ 1:
It follows that both p1ðk1Þ and p1ðk1 þ 1Þ are a�-states with a constant transition.

Therefore, BR2½p1ðk1Þ
 ¼ br2½p1ðk1Þ
 and BR2½p1ðk1 þ 1Þ
 ¼ br2½p1ðk1 þ 1Þ
: By

NEWT, ak1
2 ¼ ak1þ1

2 ¼ brða�Þ: However, we have shown that player 2 plays two

different actions at k1 and k1 þ 1; a contradiction. &

The following example illustrates the reasoning involved in this result. Let the
stage game be Chicken or PD. Suppose that ðs1; s2Þ is a NEWT in forgiving trigger
strategies, which induces at

1 ¼ at
2 ¼ C for all tXt�: Since CabrðCÞ in either stage

game, NEWT requires that for every player j: (i) at�
j ¼ BRj½piðt�Þ
; (ii) there exists a

period tjot� in zðs1; s2Þ; such that piðtjÞ ¼ piðt�Þ and a
tj

j ¼ D: For each player j; let kj

denote the latest such period tj:Without loss of generality, let k14k2: Then, the play

pattern in the periods that immediately precede period t� is:

Period k2 y k1 y t�

Player 1 C y D y C

Player 2 D y C y C

Player 1 is being punished by player 2 between k2 and t� for his failure to play C

against p2ðt�Þ at period k2: Similarly, player 2 is being punished by player 1 between
k1 and t� for his failure to play C against p1ðt�Þ at period k1: The proof established
that t�4k1 þ 1; such that the latter statement is not vacuous. The structure of
forgiving trigger strategies has two implications on the players’ behavior when one of
them punishes the other. First, the punishing player plays the min–max action (D in
both stage games). Second, the punished player plays myopically against the min–
max action. But, this leads to a contradiction because player 2 plays C at period k1
and D at period k1 þ 1: One of these actions is not the myopic best-reply to D; hence
player 2’s behavior violates NEWT.
Proposition 6 implies that forgiving trigger strategies are incapable of sustaining

cooperation in any repeated symmetric game. The reason for their restrictiveness is
that they force the tests that justify the players’ cooperation to take place almost
simultaneously. But this means that at least one player i takes a non-myopic action
when he is being punished. Such a move would only be justified if player j’s strategy
contained a ‘‘high-order threat’’—i.e., a ‘‘punishment state’’ with a non-constant
transition. However, forgiving trigger strategies do not contain such punishment
states. Thus, the simple punishment structure of forgiving trigger strategies does not
allow the tests to be properly coordinated.
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6. Concluding remarks

6.1. NEWT and experimentation

Under the justifiability-based interpretation of NEWT, each player knows his
opponent’s strategy; he performs tests not to resolve his own uncertainty, but to
convince an outside observer. Let us now explore an alternative, experimentation-
based interpretation. Suppose that player j enters the game with some uncertainty
regarding the opponent’s strategy. He has a prior belief that assigns a high
probability to player i’s true strategy si:

11 However, he is not sure whether the threats
he ascribes to player i are real. His prior contains additional strategies, each
dispensing with one of these threats.
Given this strategic uncertainty, it is optimal for player j to experiment. Threat

testing is broadly consistent with optimal experimentation, if he is patient enough,
depending on his exact prior, the stage game’s payoffs and the structure of si:
Calculating the optimal experimentation strategy is a complex task. A boundedly
rational player may employ a simplifying rule of thumb: test every threat in si (the
most probable automaton of the opponent) that rationalizes a non-myopic action, as
soon as the threat is faced. If ðs1; s2Þ is both a NEWT and an e-NE, this means that
the heuristic approximates the optimal experimentation strategy. In this case, we
may interpret NEWT as a concept that describes how boundedly rational players
play a repeated game when they have some initial uncertainty regarding the
opponent’s strategy.

6.2. Related literature

This paper is related to a strand in the literature, which formulates game-theoretic
solution concepts that are based on individual decision procedures other than
Bayesian rationality. See, for example [2,3,7]. Spiegler [8] proposes an alternative
approach to justifiability in games. In that paper, I construct an equilibrium concept
for extensive games, in which players do not choose strategies that maximize their
utility, but strategies that they can justify to an imaginary ‘‘critic’’ in a post-game
debate. A strategy is justifiable if for every objection of a certain form that the critic
can raise, the player can come up with a ‘‘smashing’’ counter-objection.
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