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Abstract

When inferring causal effects from correlational data, a common

practice by professional researchers but also lay people is to control

for potential confounders. Inappropriate controls produce erroneous

causal inferences. I model decision-makers who use endogenous ob-

servational data to learn actions’causal effect on payoff-relevant out-

comes. Different decision-maker types use different controls. Their

resulting choices affect the very correlations they learn from, thus

calling for equilibrium analysis of the steady-state welfare cost of bad

controls. I obtain tight upper bounds on this cost. Equilibrium forces

drastically reduce it when types’sets of controls contain one another.
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1 Introduction

Learning causal effects from observational data is an important economic

activity. Indeed, applied economists do it for a living. However, even lay

decision-makers (DMs) regularly perform this activity to evaluate the con-

sequences of their actions. They obtain data about observed correlations

among variables (via first- or second-hand experience, or from the media)

and try to extract causal lessons. Will a college degree improve one’s long-

run economic prospects? Will wearing surgical masks on airplanes lower

one’s chances of catching a virus? Is coffee drinking good for one’s health?

The way professional researchers and lay DMs practice causal inference

differs in two major respects. First, researchers employ sophisticated in-

ference methods that are subjected to stringent peer review. In contrast,

lay DMs use intuitive, elementary methods, and face no pushback for doing

so inappropriately. Second, while researchers are typically outside observers,

lay DMs interact with the economic system in question; the aggregate behav-

ior resulting from their causal inferences affects the correlations that inform

these very inferences. For example, the inferences that parents make about

the value of a college degree affect their children’s educational choices, which

in turn shape the correlational patterns that future parents rely on to evalu-

ate college degrees. In both respects, it is apt to refer to the causal inferences

that lay DMs engage in as “behavioral”.

This paper is an attempt to model “behavioral causal inference”, and

analyze its welfare implications for DMs “in the field”. Motivated by the

ubiquity of binary-treatment evaluation in causal-inference studies in epi-

demiology and the social sciences, I consider a DM who chooses a binary

action a and tries to assess its effect on a gross payoff outcome y. The DM

incurs a cost of θ whenever a 6= t, where t is a random variable that indicates

the DM’s favorite action. The DM will take the unfavorite action only if he

thinks this has a beneficial causal effect on y that offsets the cost. In the

baseline model, I assume that the true causal effect is null, to sharpen the

exposition.

The DM forms his subjective causal belief by applying an intuitive causal-

inference procedure to long-run correlational data about actions, outcomes

and a collection of exogenous variables (some of which are, or correlated with
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the true causes of y). The procedure is simple: Measuring the correlation

between actions and outcomes, while controlling for some set of exogenous

variables. This is a common procedure in scientific data analysis, but it is

basic enough for lay people to practice it (at least in simple form).

For instance, when agents evaluate surgical masks’protective benefits,

they may regard the raw correlation between mask wearing and infection

rates as causal. Savvier agents may restrict attention to infection statistics

for people in their own age group (if they has access to such fine-grained

data). In this case, age is their control variable. Likewise, parents who

consider whether to send their child to a private school may regard the raw

correlation between school choice and college-admission outcomes as causal.

Savvier parents may restrict attention to admission statistics for candidates

with the same parental education (if they have access to such data). In this

case, parental education is the control variable. As these examples suggest,

DMs may differ in what they feel a need to control for, or in their access to

data about potential controls.

In general, I represent long-run observational data by a joint probability

distribution p over actions, outcomes, and exogenous variables x1, ...., xK .

The DM’s preference type t itself is not observable (but potentially correlated

with x). Think of p as describing frequencies in a large database that records

the historical behavior of many DMs of various types. Part of what defines

a DM’s type in my model is the set C of x variables he controls for (C is

distributed independently of t). This reflects the idea that DMs may differ

in their access to the historical database, or in the exogenous variables they

deem relevant.

A DM of type C estimates the causal effect of actions on outcomes ac-

cording to the empirical average of y given xC and a. This DM can err in

both directions: His set of controls C may omit a relevant exogenous vari-

able or include an irrelevant one (Angrist and Pischke (2009), Cinelli et al.

(2022)). Both errors can produce biased causal estimates. The bias can be

large, if the exogenous variables x are strongly correlated with both a and y.

This is why using bad controls is a grave error for empirical researchers.

However, in our setting, the correlation between x and a in the aggre-

gate database that p represents is endogenous, reflecting individual DMs’

subjective optimization with respect to the causal belief they extract from
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p. Specifically, the objective conditional distribution p(a | t, x), which de-

scribes empirical action frequencies in the database, describes the aggregate

behavior of the DM population arising from the strategies of all DM types.

This two-way relation between DMs’actions and causal beliefs calls for an

equilibrium analytical approach. In equilibrium, each type’s strategy (as

given by p) prescribes best-replies to the causal belief he extracts from p

using his set of controls. This equilibrium requirement turns out to have

non-trivial implications for the decision costs of flawed causal inference in

the form of bad controls, in a variety of economic contexts that involve

health, education, lifestyle or business decisions.

Example 1.1: Chess and math

A parent wishes to know whether his children can improve their school math

performance by playing chess. The gross benefit from high math performance

is 1, and the cost of playing chess against one’s liking is θ < 1. The fraction

of children who like playing chess is γ < θ. In reality, children like chess if

and only if they are good at math; but ceteris paribus, playing chess has no

causal effect on math performance. The optimal strategy based on rational

expectations is thus to let children play chess if and only if they like it.

Suppose our parent has long-run data resulting from previous parents

who followed this strategy. Then, he will observe a perfect correlation be-

tween chess playing and math school performance. The correlation is due to

confounding by children’s latent preferences. However, if the parent falsely

interprets the correlation as causal, he will administer chess to his children

against their taste. The expected welfare loss from this misguided strategy

is θ(1− γ).

As successive generations of parents adhere to this strategy, the observed

long-run correlation between chess playing and math performance will grad-

ually becomes weaker, since children who are bad at math now also play

chess. Over time, this trend erodes parents’belief in the magical power of

chess: More frequent chess playing dissipates its perceived causal effect.

This dynamical process reaches an equilibrium when parents’stable-over-

time choices constitute a best-reply to stable-over-time causal beliefs, which

are extracted from long-run data. In Section 4, I show formally that the

unique equilibrium strategy administers chess to children who dislike it with

some intermediate probability, such that the estimated causal benefit from
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playing chess equals the cost θ. The higher this cost, the lower the frequency

of paying chess against one’s liking.1 The equilibrium expected welfare loss

is γ(1 − θ), which is always below γ(1 − γ) (the same upper bound applies

when γ > θ). This is significantly below the non-equilibrium benchmark.

In particular, when γ is small and θ ≈ 1 (i.e., when most kids really dislike

chess) the non-equilibrium loss is approximately 1 while the equilibrium loss

is close to 0.

Thus, equilibrium effects can drastically reduce the welfare loss due to

naive causal interpretation of the raw action-consequence correlation. But

now suppose that some parents in the population form causal estimates

by controlling for various exogenous correlates of children’s taste (which

continues to be the sole true cause of math performance). For instance,

one can control for parents’scientific background or country of origin. How

will heterogeneity among parents in terms of their sets of controls affect the

equilibrium welfare loss?

There are two conflicting intuitions. On one hand, controlling for proxies

of children’s preferences brings parents closer to the ideal of shutting down

preferences’confounding effect; this should curb causal-inference errors and

shrink the welfare loss. On the other hand, by varying their behavior with

different sets of controls, parents create more elaborate confounding patterns

in the data, giving fodder for more wrong causal inferences that can exacer-

bate the equilibrium welfare loss. It turns out that the maximal equilibrium

welfare loss depends on the structure of the collection of parents’sets of con-

trols. When these sets are nested via set inclusion, the upper bound on the

welfare loss remains γ(1− γ). In contrast, when the sets are not ordered by

set inclusion, the tight upper bound is max{γ, 1− γ}, which is significantly
greater. �

The main results in the paper characterize tight upper bounds on the

DM’s expected equilibrium welfare loss for various environments. Section 3

considers homogenous preferences (t is constant), imposing no restrictions

on the joint distribution of x and y. The characterization has a “bang-bang”

flavor. As in Example 1.1, the bound depends on whether DM types’sets

1While the intuitive dynamic process described here motivates my equilibrium notion,
it remains in the background in the formal exposition. It could be formalized to provide a
rigorous learning foundation for equilibrium in this example. Generality of this foundation
is an open problem.
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of controls contain one another. When they do, the equilibrium welfare loss

is zero – i.e., equilibrium forces fully “protect”DMs from causal-inference

errors. Otherwise, the tight upper bound coincides with the non-equilibrium

benchmark. Section 4 examines environments with preference heterogeneity,

essentially formalizing Example 1.1. It also shows that when DM types are

not vertically ordered and there are no restrictions on the joint distribution

over t, x, y, the tight bound on the equilibrium welfare loss coincides with

the non-equilibrium benchmark.

Thus, whether data types are “vertically” ordered by set inclusion is

crucial for the worst-case analysis of the decision costs of bad controls. In

applications, vertical ordering is plausible to assume when all DMs are inter-

ested in the same variables, yet differ in their quality of data access: Certain

variables are available to everyone, while others are only available to agents

with “premium access”– with possibly multiple degrees of exclusive access.

In contrast, “horizontally” differentiated type spaces (with different types

using different controls) are more appropriate for environments in which dif-

ferent DM types obtain their data from separate social-media echo chambers,

or from experts in different fields who focus on different aspects of reality.

In addition to the upper-bound results, Sections 3 and 4 illustrate the

model and its potential for economic applications, using examples that in-

volve natural parameterizations, rather than ones designed specifically for

attaining the upper bounds. Later sections extend my analysis in two sepa-

rate directions. Section 5 generalizes the model by relaxing the assumption

that DMs can condition their action on every variable they control for. Sec-

tion 6 presents a straightforward translation of all the results in the paper

to settings in which a has an additively separable, non-null causal effect on

y. I apply this extended model to a life-style decision problem, and use it to

illustrate the non-trivial externality that sophisticated DMs exert on naifs.

The paper’s main message is that the distinction between exogenous and

endogenous datasets matters greatly for the cost of poor causal inference.

Specifically, when we impose equilibrium discipline on the database from

which DMs draw causal inferences using potentially bad controls, equilibrium

forces can protect DMs from causal-inference errors. However, from the point

of view of worst-case analysis, the magnitude of this “equilibrium protection”

is much greater when DMs’sets of controls are nested.
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2 A Model

A decision-maker (DM) chooses an action a ∈ A = {0, 1}. Let t ∈ {0, 1}
be the DM’s preference type. Let y ∈ Y ⊂ [0, 1] be an outcome. Let x =

(x1, ..., xK) be a collection of exogenous variables that are realized jointly

with t, prior to the realization of a and y. Let Xk be the finite set of values

that xk can take. For every M ⊆ {1, ..., K}, denote xM = (xk)k∈M and

XM = ×k∈MXk. I assume that x and t are the only potential causes of y –

i.e., a has no causal effect on y (Section 6 relaxes this assumption).

The DM’s vNM utility function is u(t, a, y) = y − θ · 1[a 6= t], where

θ ∈ (0, 1) is a constant. Thus, the DM has an intrinsic motive to match his

action to his preference type; he will choose a 6= t only if he believes this

increases the expected value of y. If the DM understood that a has no causal

effect on y, he would always choose a = t; this would be the DM’s rational

choice. The DM’s data type i ∈ N = {1, ..., n} is drawn independently from
a distribution λ ∈ ∆(N).2 Each type i ∈ N is associated with a distinct

subset Ci ⊆ {1, ..., K}. I refer to Ci as type i’s set of control variables. A
strategy for type (t, i) is a function σt,i : XCi → ∆(A).

The interpretation of data types is as follows. Type i observes the re-

alization of xCi prior to making his decision. He also has access to “public

data”about the long-run joint distribution of xCi , a, y (I will introduce this

distribution below). The DM believes that to learn the causal effect of a

on y, he should control for these variables. As far as variables outside Ci
are concerned, data type i is unaware of them, lacks data about them, or

dismisses them as being irrelevant. Note that t never belongs to the DM’s

set of control variables. The interpretation is that t is private information

that never enters public datasets. However, note that the x variables, about

which public data is available, can be highly (or even perfectly) correlated

with t. Also, the model does not admit variables that are caused by a or y as

possible controls – it only focuses on exogenous, “pre-treatment”controls.

Let p be a probability distribution over t, x, a, y. Denote γ = p(t = 1). I

interpret p as a long-run distribution, or as a frequency table of a large histor-

ical database. Data type i knows p(xCi , a, y) – this is what “having access to

public data”about the variables in question means. The assumption that a

2The independence assumption is immaterial for the results in Section 3 but plays a
role in Section 4.
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has no causal effect on y means that p satisfies the conditional-independence

property y ⊥ a | (t, x), and hence factorizes as

p(t, x, a, y) = p(t, x)p(a | t, x)p(y | t, x)

where p(t, x) and p(y | t, x) are exogenous, while p(a | t, x) is endogenous,

representing the DM’s average behavior across data types:

p(a | t, x) =
∑
i∈N

λiσt,i(a | xCi)

Thus, the public data that a DM of any type relies on is aggregate, repre-

senting the endogenous choices of all types. In what follows, I take it for

granted that σ is implicit in p, without notating this explicitly.

Since a DM of data type i believes that Ci is a valid set of controls, he

regards p(y | a, xCi) as a proper estimate of the probabilistic consequence of
choosing a, given his observation of xCi . His perceived causal effect of a on

y given x is

∆i(x) = Ep(y | a = 1, xCi)− Ep(y | a = 0, xCi) (1)

If the DM had long-run data about all exogenous variables (including

t), he could control for all of them, and thus correctly infer the action’s null

causal effect. In contrast, our DMmay end up believing that a has a non-null

causal effect on y because he fails to control for some exogenous variables. In

this case, he misinterprets part of the correlation between a and y as a causal

effect, whereas in reality this correlation is entirely due to confounding by

t, x. What makes the model non-trivial is that these confounding patterns

are endogenous: Ep(y | a, xCi) is not invariant to the strategy profile σ−i,
which determines how a varies (in the aggregate data) with t and x−Ci . Note

that since Ci never includes the latent variable t, formula (1) does not include

the rational benchmark as a special case (except when Ci happens to include

a variable that is perfectly correlated with t).
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Example 2.1: Illustrating formula (1)

Let K = 1 – i.e., there is a single potential control variable x. Suppose

x ∈ {0, 1} and p(x = t | t) = q ∈ (1
2
, 1) for every t. That is, x is a proxy of

t whose precision is given by q. Suppose also that p(y = t | t) = 1 for every

t. Let n = 2, such that C1 = {1} and C2 = ∅. That is, the “sophisticated”
type 1 controls for x, whereas the “naive” type 2 either lacks access to

data about x or finds it irrelevant. Suppose the DM’s strategy σ prescribes

a = 1 with certainty when t = 1. The probability that each DM type

plays a = 1 at t = 0 (as a function of x, in the case of type 1) is denoted

α1(x) = σt=0,i=1(a = 1 | x) and α2 = σt=0,i=2(a).

Let us now calculate ∆1(x) and ∆2. Recall that p(y = 1 | a, x) ≡ p(t =

1 | a, x). Since all types play a = 1 whenever t = 1, p(t = 1 | a = 0, x) = 0

for every x. It follows that

∆1(1) = p(t = 1 | a = 1, x = 1) =
γq

γq + (1− γ)(1− q)[λ1α1(1) + λ2α2)]

∆1(0) = p(t = 1 | a = 1, x = 0) =
γ(1− q)

γ(1− q) + (1− γ)q[λ1α1(0) + λ2α2]

∆2 = p(t = 1 | a = 1) =
γ

γ + (1− γ)[λ1(qα1(0) + (1− q)α1(1)) + λ2α2]

We will revisit these formulas in Example 4.2. �

As the example demonstrates, the DM’s estimate of the causal effect of a

can be sensitive to the strategy profile σ. This observation suggests that to

define subjective optimization with respect to the causal belief one extracts

from an endogenous database, an equilibrium approach is called for.

Definition 1 (Equilibrium) Let ε ∈ (0, 1
2
). A strategy profile σ = (σ1, ..., σn)

is an ε-equilibrium if for every i = 1, ..., n and every t, x, a′, σt,i(a′ | x) > ε

only if

a′ ∈ arg max
a
{Ep(y | a, xCi)− θ · 1[a 6= t]}

An equilibrium is a limit of a sequence of ε-equilibria for ε→ 0.

This definition captures a steady state in an underlying dynamic process.

At every period, a new DM makes a one-shot decision after observing a large
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sample of past realizations of t, x, a, y. The DM approaches the data like a

frequentist statistician. In particular, he does not take into consideration the

fact that the data was partly generated by DMs of other types. He extracts a

causal belief from this sample and best-replies to it, thus contributing a new

data point to future DMs’samples. Equilibrium means that the statistical

patterns of DMs’choices remain stable over time. Equilibrium existence can

be established by standard arguments (see Section 7).

The trembling-hand aspect of the equilibrium concept means that the

database the DM relies on involves a small element of blind experimentation

by some data types. Technically, it ensures that all the conditional proba-

bilities that are implicit in Ep(y | a, xCi) are well-defined (recall that these
conditional probabilities are derived from the objective joint distribution

p over t, x, a, y). We can therefore avoid a discussion of “off-path”beliefs,

which would be alien to the strictly frequentist perspective of this paper.

At any rate, trembles play a minor role in this paper. Their exact form is

irrelevant for the upper-bound characterizations, with the single exception

of Proposition 5.

The structure of u means that in equilibrium, type i will play a 6= t with

positive probability at x only if |∆i(x)| ≥ θ. Since a has a null objective

causal effect on y, playing a 6= t yields a welfare loss.

Definition 2 (Expected welfare loss) Given a strategy profile σ, the DM’s
expected welfare loss is

θ
∑
t,x

p(t, x)
∑
i∈N

λiσt,i(a 6= t | x) (2)

My main analytical task in the next sections will be to derive upper

bounds on this quantity when σ is required to be an equilibrium. Without this

equilibrium condition, the upper bound is 1. To illustrate why, suppose that

t = 0 with certainty, and that x ∈ {0, 1}. Assume y = x with certainty for

every x, and consider the strategy σ that prescribes a = x with probability

one. By definition, the probability of error is p(x = 1). If p(x = 1) ≈ 1

and θ ≈ 1, the welfare loss is approximately 1. However, the strategy σ is

inconsistent with equilibrium. If a data type i varies his action with x, then

he controls for it and correctly estimates the null causal effect of a. As a
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result, he will always play a = 0, contradicting the assumption that a varies

with x in the aggregate data.

Comment: The rationality benchmark. The rational benchmark for this

model is a DM who controls for t and x – i.e., he has data about all poten-

tial confounders. This DM always plays a = t. What would be a “rational”

mode of behavior for a DM with limited data, who is aware that there may

be confounders beyond those he has data on? From this paper’s strict fre-

quentist perspective, there is no clear prescription. Consider a competent

econometrician who knows that his dataset excludes certain confounders.

Rather than using whatever control variables he has at his disposal, the

econometrician would simply refrain from making a causal-inference claim,

knowing that he lacks a credible causal-identification strategy. Our DM can-

not afford to do so, because he has to make an active choice. Consequently,

he proceeds with his available controls as if they suffi ce. This is part of what

makes his causal inference “behavioral”.3

3 Analysis: Homogenous Preferences

This section characterizes the maximal equilibrium welfare loss when there

is no variation in the preference type t. Specifically, assume that t = 0

with probability one (i.e., γ = 0), such that the DM’s expected welfare loss

is θ · Pr(a = 1). In this environment of preference homogeneity, the only

potential source of variation in the DM’s behavior is the way the various

types condition their actions on x.

For any setN of data types, there is an equilibrium in which the DM plays

a = 0 with probability one. To see why, construct the perturbation of this

strategy: Each data type i plays a = 1 with probability ε ≈ 0, independently

of xCi . By construction, a ⊥ x under this strategy profile. Therefore∆i(x) =

0 for every type i, such that a = 0 is the type’s unique best-reply, which is

consistent with ε-equilibrium. The question is whether there are additional

equilibria in which the DM commits an error with positive probability.

3A Bayesian-rational approach would assume that the DM has a subjective prior belief
over the data-generating process, which he updates according to the data. If the DM
correctly believes that the mapping from (t, x, a) to y is constant in a, he will always play
a = t, regardless of what he learns from the data.
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Example 3.1: Preventive healthcare

Let K = 1 and n = 2, such that C1 = {1} and C2 = ∅, as in Example 2.1.
An economic story behind this scenario is that x, y and a represent age,

a health outcome, and a choice whether to adopt a costly, yet objectively

useless preventive healthcare measure. Type 1 has access to data about how

age is correlated with the other variables, and can therefore control for age

when estimating the preventive measure’s causal health effect. Type 2 lacks

the data, and therefore fails to control for the potential confounder.

Since type 1 controls for x, he correctly estimates a null causal effect of

a on y. This type plays a = 0 regardless of x – i.e., he ends up not varying

his action with x. Type 2 potentially commits an error of causal inference

because he fails to control for x, and interprets any empirical correlation

between a and y as a causal effect. However, by definition, this type, too,

does not vary his action with x. It follows that none of the two types vary

their actions with x. If p is consistent with equilibrium, then a and x must

be statistically independent, thus destroying any possibility of x acting as a

confounder of the relation between a and y. Yet, in the absence of confound-

ing, failure to control for x is harmless. It follows that under the equilibrium

restriction that p(a | x) reflects data types’ subjective optimization with

respect to their causal beliefs, the DM incurs no welfare loss due to bad

controls. �

The first result generalizes the example. It is based on a notion of vertical

ordering of data types.

Definition 3 (Vertically ordered types) The set of data types N is ver-

tically ordered if types can be enumerated such that C1 ⊃ · · · ⊃ Cn.

When N is vertically ordered, lower-indexed data types control for a larger

set of variables. In particular, type i controls for every variable that type

j > i conditions on. In this case, data types are naturally ranked in terms

of how close they are to the ideal of controlling for all potential confounders

(since the DM never controls for t, no type attains this ideal).

As mentioned in the Introduction, vertical ordering fits situations in

which all DM types agree on what they consider to be relevant controls;

however, they have limited degrees of data access. Variables are ordered in
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terms of how easy it is to get access to data about them; DM types can be

viewed as rungs on this ladder. More broadly, vertical ordering of DM types

resonates with other areas of economic theory that classify agents according

to some linear ordering (ranking preference types by a willingness-to-pay

scalar, ranking information types by the quality of their signal, etc.). Such

typologies are attractive to economic theorists because they are interpretable

and generate sharp results. The same holds in this paper. DMs with larger

sets of control variables are intuitively closer to the ideal of correct causal

inference. Therefore, they are intuitively more “sophisticated”(though we

will have opportunities to be reminded that adding controls is not necessarily

beneficial). And as our analysis will now begin to show, vertically ordered

DM spaces generate strong results about the equilibrium decision costs of

bad controls.

Proposition 1 Let γ = 0. Suppose N is vertically ordered. Then, the

unique equilibrium is for all DM types to play a = 0 with probability one. In

particular, the DM’s expected welfare loss is zero.

Thus, when γ = 0 and data types are vertically ordered, the equilibrium

requirement fully “protects”the DM from choice errors due to bad controls.

It does so by shutting down the channels through which the choice behavior

of some data types could confound the statistical relation between actions

and outcomes.

The results in this section are special cases of results which are reported

in Section 5 and proved (like virtually all other results in this paper) in

the Appendix. Here I make do with an informal sketch of the proof of

Proposition 1, which is elementary in the special case covered by this section.

It proceeds by induction on the set of data types. Type 1 effectively controls

for all sources of correlation between a and y. Even when he fails to control

for some exogenous variables, this does not matter because no other type

conditions on them, hence they generate no confounding effect. As a result,

type 1’s subjective best-reply is always correct – i.e., a = 0. Since type

1’s strategy generates no variation in behavior, type 2 effectively controls

for all potential confounders – which would not be the case if we did not

impose the equilibrium condition on type 1’s behavior. This equilibrium

effect spreads down the set of data types, via the inductive argument.
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How important is the vertical ordering of data types for Proposition 1?

The following example begins to address this question.

Example 3.2: Analysts with diverse expertise

Let K = 2. All variables take values in {0, 1}, and their joint distribution
treats x1 and x2 symmetrically. Denote px1x2 = p(x1, x2) and δx1x2 = p(y =

1 | x1, x2). Let n = 2, λ1 = λ2 = 1
2
, Ci = {i}.

For an economic story behind this specification, consider firms whose

profitability (represented by y) is determined by financial and technical fac-

tors (represented by x1 and x2). A firm’s decision is guided by business

analysis. There are two kinds of analysts, who specialize in different as-

pects. Some firms base their decisions on a financial analyst, while others

base their decisions on a technical analyst. Firms’analysts use the same

aggregate data arising from the decisions of both types of firms, but each

analyst has tunnel vision and neglects the aspect outside his area of ex-

pertise. Since C1 and C2 are disjoint, this is an instance of “horizontal”

differentiation between data types.

Let us guess the strategy a = xi for every x and i – i.e., the firm’s

action tracks the factor it controls for – and examine when this constitutes

an equilibrium. Without loss of generality, we can focus entirely on type

1’s reasoning. Begin by calculating his subjective estimate of actions’causal

effect on profits, conditional on x1. Since y ⊥ a | x,

p(y = 1 | a, x1) =
∑
x2

p(x2 | a, x1)δx1x2

for every a, x1. For a = x1 to be a best-reply for type 1, we must have

p(y = 1 | a = 1, x1 = 1)− p(y = 1 | a = 0, x1 = 1) ≥ θ

p(y = 1 | a = 1, x1 = 0)− p(y = 1 | a = 0, x1 = 0) ≤ θ

Let us derive expressions for p(x2 = 1 | a, x1) for all combinations of a
and x1, as induced by the firm’s strategy:

p(x2 = 1 | a = 1, x1 = 1) =
p11

p11 + λ1p10
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p(x2 = 1 | a = 0, x1 = 1) = 0

p(x2 = 1 | a = 1, x1 = 0) = 1

p(x2 = 1 | a = 0, x1 = 0) =
λ1p01

p00 + λ1p01

Note that these quantities never involve conditioning on a zero-probability

event. For example, the combination a = 0, x1 = 1 arises when x2 = 0 and

the firm is of type 2.

Plugging the expressions for p(x2 | a, x1) in the best-reply conditions, we
obtain

2p11
2p11 + p10

(δ11 − δ10) ≥ θ ≥ 2p00
2p00 + p01

(δ01 − δ00)

These inequalities ensure that the strategy we guessed is an equilibrium.

The firm’s expected welfare loss in this equilibrium is

θ · (p11 + λ1p10 + λ2p01) = θ · p(xi = 1)

In particular, when the factors x1 and x2 are independently and uniformly

distributed, the equilibrium condition simplifies into

δ11 − δ10 ≥
3

2
θ ≥ δ01 − δ00

and the welfare loss is 1
2
θ ≤ 1

3
. A more extreme specification is p11 ≈ 1 and

δx1x2 = x1x2. In this case, the equilibrium condition holds for every θ < 1,

and the equilibrium expected welfare loss is approximately θ, which itself

can be arbitrarily close to the non-equilibrium benchmark of 1.

The intuition behind this result is that since type i varies its action with

xi yet fails to control for xj, each type creates a confounding effect that

“fools” the other type. Type i is vulnerable to interpreting the residual

correlation between a and y after controlling for xi – which exists because

of type j’s strategy – as a causal effect. While correlation between x1 and

x2 can exacerbate the DM’s welfare loss, it is not necessary for it: As we saw,

the loss can arise even when the two factors are independent. The reason

is that although the two data types condition their actions on independent

exogenous variables, their subjective causal estimates involve conditioning

on a – a variable whose distribution records firms’aggregate behavior. Since
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this variable is a common consequence of x1 and x2, conditioning on it creates

correlation between otherwise-independent variables.

The equilibrium welfare loss is non-monotone with respect to the data

types’sets of control variables. For example, suppose C1 = {1} and C2 = ∅
– i.e., type 2 now does not control for any variable. In this case, the type

space is vertically ordered; and by Proposition 1, neither data type will

commit an error in equilibrium. It follows that expanding one type’s set of

control variables can be detrimental for all types’welfare. �

The following result generalizes this example.

Proposition 2 Let γ = 0. Suppose N is not vertically ordered. Then, for

any θ, β ∈ (0, 1), there exist λ and (p(x, y)) such that Pr(a = 1) > β in some

equilibrium. In particular, when θ ≈ 1, the equilibrium welfare loss can be

arbitrarily close to 1.

Thus, when types are not vertically ordered, equilibrium forces do not

curb the maximal welfare loss due to faulty causal inference. The reason

is that the equilibrium behavior of different types can create confounding

patterns that feed each other’s inference errors.

4 Analysis: Heterogeneous Preferences

In this section I reintroduce preference heterogeneity, by assuming γ ∈ (0, 1).

The significance of this degree of freedom is that it implies an intrinsic motive

for the DM to vary his behavior with an exogenous variable. By comparison,

in the homogenous-preference case, the DM would vary his behavior with an

exogenous variable only if he (erroneously) concluded that it influences the

causal effect of a on y. Denote δt = Ep(y | t). Without loss of generality,
assume δ1 ≥ δ0.

Example 4.1: Chess and math revisited

This is a formalization of the first part of Example 1.1. Let y ∈ {0, 1}.
Suppose δt = t – i.e., y = 1 (high math performance) if and only if t = 1

(the child likes playing chess). Let K = 0 and n = 1 – i.e., there is a unique

data type, C = ∅. Denote αt = σt(a = 1).
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I establish uniqueness of equilibrium in this setting, and characterize the

DM’s equilibrium welfare loss. The DM’s estimated causal effect of a on y

is

∆ = p(y = 1 | a = 1)− p(y = 1 | a = 0)

Since the DM’s intrinsic payoff from playing a = 1 increases with t, we must

have α1 ≥ α0 in equilibrium. Now obtain explicit expressions for the terms

that define ∆:

p(y = 1 | a = 1) =
γ · α1 · δ1 + (1− γ) · α0 · δ0

γ · α1 + (1− γ) · α0

p(y = 1 | a = 0) =
γ · (1− α1) · δ1 + (1− γ) · (1− α0) · δ0

γ · (1− α1) + (1− γ) · (1− α0)
A simple calculation establishes that since δ1 > δ0 and α1 ≥ α0, we must

have ∆ ≥ 0. This in turn implies that α1 ≥ 1− ε in ε-equilibrium, because
when t = 1, the DM perceives no conflict between his intrinsic taste for

playing a = t and the estimated effect of his choice on y. Plugging the

known expressions for α1 and δt and taking the ε→ 0 limit, we obtain

∆ =
γ

γ + (1− γ) · α0

If α0 ≤ ε in ε-equilibrium, then ∆ → 1 in the ε → 0 limit. But then

∆ > θ, hence playing a = 1 at t = 0 is the unique subjective best-reply.

Therefore, the ε-equilibrium requirement is that α0 > ε, a contradiction. It

follows that α0 > 0 in equilibrium. There are two cases to consider.

Case 1: α0 ∈ (0, 1). This requires the DM to be indifferent between the two

actions – i.e., ∆ = θ. Therefore, γ < θ and

α0 =
γ(1− θ)
(1− γ)θ

Since the DM only commits an error in equilibrium when t = 0, his expected

equilibrium welfare loss is

θ · (1− γ) · α0 = γ(1− θ) < γ(1− γ)

By setting θ ≈ γ, we can get arbitrarily close to the upper bound of γ(1−γ).
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Case 2: α0 = 1. This requires us to sustain equilibrium with trembles.

Specifically, suppose α1 = 1 − ε2 and α0 = 1 − ε. As ε → 0, we obtain

p(y = 1 | a = 1) ≈ γ and p(y = 1 | a = 1) ≈ 0. If (and only if) γ ' θ, this

is consistent with equilibrium. The DM’s welfare loss in this equilibrium is

θ · (1− γ) · 1 ≤ γ(1− γ). By setting θ = γ, we implement the upper bound.

Thus, for any configuration of θ and γ, there is a unique equilibrium in

this setting. The DM’s equilibrium welfare loss in this equilibrium is always

weakly below γ(1− γ). This bound can be approximated arbitrarily well by

setting θ ≈ γ (and if we set θ above γ, the equilibrium that approximates

the upper bound does not rely on trembles). �

As in Example 3.1, equilibrium forces in Example 4.1 “protect”the DM

from causal errors, by pushing his welfare loss far below the non-equilibrium

benchmark. The DM mistakes the correlation between a and y for a causal

effect. This correlation is large when a varies strongly with t; it hits the

maximal level when a always coincides with t. However, that extreme case

is precisely when the DM commits no error. At the other extreme, if the DM

almost always plays a = 1 because his estimated causal effect of a on y is

above θ, the frequency of the DM’s error is maximal. However, since in this

case a varies little with y, the estimated causal effect is small. In general, a

larger estimated causal effect is associated with a lower equilibrium frequency

of errors. This is why equilibrium effects limit the expected cost of failing

to control for x.

I now turn to a characterization of the upper bound on the DM’s equi-

librium welfare loss for any value of K, for a restricted domain of data-

generating processes. Specifically, I assume that p(y | t, x) ≡ p(y | t) –
i.e., y ⊥ x | t. This fits situations in which the DM’s preference type is a
suffi cient statistic for determining the outcome; the x variables are merely

observable correlates of this statistic. An instance of this domain restriction

is that a student’s school performance is determined by whether he enjoys

studying.

Lemma 1 Suppose N is vertically ordered. If y ⊥ x | t, then in equilibrium,
αt = 1 and ∆i(x) ≥ 0 for every data type i.

Thus, when data types are vertically ordered, the DM’s estimated causal

effect of a on y is always non-negative in equilibrium, regardless of his data
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type and the realization of x. While data types may disagree on the magni-

tude of the causal effect of a on y, they all agree on its sign. Consequently,

the DM must always play a = 1 when t = 1 in any equilibrium.

As with Proposition 1, the proof of Lemma 1 proceeds by induction on

the set of data types, starting with type 1, whose set of controls is the largest.

Although this type controls for every x variable the other data types condi-

tion on, this does not mean he is immune to neglecting confounders, because

he cannot control for t. Furthermore, since this type varies his behavior

with t, he exerts a “confounding externality”(of the kind we encountered in

Example 3.2) on the other data types. This makes the inductive proof more

intricate.

Proposition 3 Suppose N is vertically ordered. If y ⊥ x | t, then the DM’s
expected welfare loss in equilibrium is at most γ(1− γ).

Example 4.1 established the tightness of this upper bound. Proposition

3 also means that across all distributions that satisfy y ⊥ x | t, the expected
welfare loss is at most 1

4
– compared with the non-equilibrium upper bound

of 1. When γ → 0, the loss converges to zero.4

Example 4.2: Chess and math with a control variable

Enrich Example 4.1 by endowing it with the structure of Example 2.1: K = 1

and n = 2, such that C1 = {1} and C2 = ∅; x ∈ {0, 1} and p(x = t | t) = q

for every t. In the context of the chess-and-math story, x may represent the

parent’s scientific background.

By Lemma 1, we can take it for granted that in any equilibrium, every

type plays a = 1 when t = 1 – as assumed in Example 2.1. Therefore,

the expressions for ∆1(x) and ∆2 that I derived in Example 2.1 apply here.

Suppose α1(1) = α2 = 1 and α1(0) = 0 – i.e., the naive type always

administers playing chess, while the sophisticated type administers playing

chess against the child’s liking if and only if x = 1. This strategy is consistent

with equilibrium whenever ∆1(1) ≥ ∆2 ≥ θ ≥ ∆1(0). To confirm that this

condition is not vacuous, let γ = 1
2
, q = 2

3
, θ = 3

5
, λ1 = λ2 = 1

2
. Plugging

these parameter values in the expressions for ∆1(1), ∆1(0) and ∆2, we can

4This limit case is not a special case of Section 3, because it implies x ⊥ y, which
Section 3 obviously did not assume.
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verify the equilibrium inequalities (it can also be shown that the equilibrium

is unique). The equilibrium welfare loss is

θ(1− γ)[λ1(qα1(0) + (1− q)α1(1)) + λ2α2] =
1

5

which is strictly below the upper bound for γ = 1
2
. �

The following result provides a more general equilibrium characterization

when there is a single potential control variable. In this case, the data types

are vertically ordered because there the only possible types are {1} and
∅. The result is easily extendible to any setting with K > 1, n = 2, and

C2 = ∅. I impose minor restrictions on the primitives (the result does not
rely on them; they merely shorten the proof).

Proposition 4 Let K = 1 and n = 2, such that C1 = {1} and C2 = ∅.
Suppose that p(t, x) has full support and that θ > γ. Then, the equilibrium

welfare loss is uniquely determined for any given p(t, x), λ, θ. It is weakly

below γ(1− θ), and weakly decreasing in λ1.

This result establishes that when there is a single potential control vari-

able, the equilibrium welfare loss is pinned down by the primitives. It is

always below the upper bound given by Proposition 3, and it decreases with

the fraction of sophisticates. As we saw in Section 3, the latter property

does not hold in general. Note that Proposition 4 does not rule out multiple

equilibria. Specifically, when the likelihood ratio p(x | t = 0)/p(x | t = 1) is

suffi ciently close to one for every x, there is a continuum of equilibria, in all

of which the welfare loss is exactly γ(1− θ).
When data types are not vertically ordered, the tight upper bound on the

DM’s expected welfare loss (under the restriction y ⊥ x | t) is significantly
higher.

Proposition 5 Suppose N is not vertically ordered. If y ⊥ x | t, then the
DM’s expected welfare loss in equilibrium is at most max(γ, 1 − γ). When

|Xk| ≥ 3 for all k, this upper bound can be approximated arbitrarily well, by

appropriately selecting θ, λ and (p(x, y | t)).
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This result carries the relevance of the distinction between vertically

ordered and unordered type spaces to the heterogeneous-preferences set-

ting. The gap between the upper bounds in the two cases – γ(1 − γ) vs.

max(γ, 1 − γ) – is significant, and gets wider as the preference type dis-

tribution becomes more unbalanced. To attain the upper bound given by

Proposition 5, I use suitable trembles and also require exogenous x variables

to take at least three values. Whether these elements in the construction

are indispensable is an open question. Unlike the case of vertically ordered

types, different data types may disagree on the causal effect’s sign; indeed,

this feature plays a key role in my implementation of the upper bound.

Example 4.3: Chess and math with horizontally differentiated types

Enrich Example 4.1 by letting K = 2 and n = 2, such that Ci = {i} for
every i = 1, 2. Let λ1 = λ2 = 1

2
. The exogenous variables are x1, x2 ∈ {0, 1}.

Denote px1x2 = p(x1, x2). Suppose px1,x2 = 1
4
for every x1, x2; and t = 1

if and only if x1 = x2, such that γ = 1
2
. Finally, let θ < 2

3
. One story

behind this specification is that the two variables represent parents’country

of origin and social class; in some countries, a taste for chess is common

among the upper class, whereas in other countries, it is common among the

working class. When parents estimate the effect of playing chess on math

performance, some control for country of origin, while others control for

social class.

We will now see that under this specification, there is an equilibrium

in which each DM type i follows the strategy a = xi. To see why, recall

first that p(y = 1 | a, x) = p(t = 1 | a, x). Furthermore, given the joint

distribution over t, x and the DM’s postulated strategy,

p(t = 1 | a = x1 = 1) =
p11

p11 + 1
2
p10

=
2

3
(3)

p(t = 1 | a = x1 = 0) =
p00

p00 + 1
2
p01

=
2

3

Since p10 = p01, p(t = 1 | a = x2) is identical. Moreover, p(t = 1 | a, xi) = 0

for all other realizations of (a, xi). Therefore, since θ < 2
3
, each type i’s

best-reply is a = xi.

Note that in this equilibrium, the DM commits decision errors with pos-

itive probability at both realizations of t: Conditional on any t, the DM
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plays a 6= t with probability 1
2
. This happens because the sign of ∆i is not

constant, unlike the case of vertically ordered spaces, where according to

Lemma 1 ∆i is always non-negative. The equilibrium welfare loss is θ/2,

which can be arbitrarily close to 1
3
. Note that this loss lies above the upper

bound of 1
4
for vertically ordered type spaces under γ = 1

2
.

The latter observation, however, is not a robust feature of the horizontally

differentiated type space. To see why, modify the example’s primitives by

setting p11 = γ = 1
2
and p00 = 0. Guess the same strategy, a = xi for

each type i. In this case, p(t = 1 | a = x1 = 1) continues to be given by

(3), although this formula now takes the value 4
5
. However, now p(t = 1 |

a, x1) = 0 for every other combination of a and x1. As long as θ < 4
5
, the

DM’s strategy constitutes an equilibrium, yet now it does not involve an

error at t = 0. Moreover, the welfare loss it induces is θ(1− γ)/2 < 1
5
, which

lies below the upper bound for vertically ordered spaces. �

The final result in this section considers unordered type spaces and lifts

all restrictions on (p(x, y | t)). It shows that in this case, the gap between
equilibrium and non-equilibrium upper bounds on the DM’s welfare loss

disappears.

Proposition 6 Suppose N is not vertically ordered. For every γ, θ ∈ (0, 1),

there exist λ and (p(x, y | t)) for which there is an equilibrium in which

Pr(a 6= t) = 1.

The results in this section leave three open problems. First, does the

characterization in Proposition 4 extend to arbitrary vertically ordered type

spaces? Second, does the upper bound γ(1 − γ) obtained for vertically

ordered types extend to distributions p for which y 6⊥ x | t? Finally, how
do results change when the distribution over data types is allowed to be

correlated with t and x?

5 Controlling without Conditioning

So far, we have assumed that the DM conditions on every variable he controls

for. This is a natural assumption in many settings – e.g., when x variables

are demographic or socioeconomic characteristics. Agents are likely to be
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informed of their own age, ethnicity and parental education, at least as

much as they are likely to know the population-level distribution of these

characteristics.

However, in some cases it makes sense to assume that the DM has access

to statistical data about variables, without knowing their realization at the

moment of choice. For example, a firm may know how its performance is cor-

related with macroeconomic indicators, yet it need not know their current

value when making its business decisions because the indicators are pub-

lished with delay. In such cases, the DM can still control for such variables,

even when he cannot condition on their realization. I refer to this mode of

controlling as adjustment as opposed to conditioning.

To accommodate this distinction, extend the definition of a data type,

so that it consists of a distinct pair (C,D) of subsets of {1, ..., K}, where
C ⊆ D. The set D represents the type’s control variables – i.e., the vari-

ables on which he has long-run statistical data (such that he knows their

joint distribution with a and y). The set C represents the variables whose

realization the DM learns before making his decision. The assumption that

C ⊆ D means that if the DM conditions on a variable, he must have long-

run data about it. In principle, one can imagine situations in which agents

know the realization of a variable without having data about its long-run

statistical behavior. For instance, the DM may know his height but lack

access to statistics about how height is correlated with the outcome of inter-

est. However, in the absence of such data, the DM cannot make use of his

height information. Therefore, from our frequentist perspective, we might

as well assume that he lacks the information. This is the justification for the

assumption that C ⊆ D.

The DM’s estimated causal effect of switching from a = 0 to a = 1 (given

x) is

∆i(x) =
∑
xD\C

p(xD\C | xC) [Ep(y | a = 1, xD)− Ep(y | a = 0, xD)] (4)

Thus, controlling for xD involves conditioning on xC and adjusting for xD\C .

Comment: Subjective state spaces

The perceived causal effect given by (4) – and by implication, the sim-

pler formula (1) – can be interpreted traditionally in terms of the Savage
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framework, where the state space itself is subjective. According to this inter-

pretation, XDi is type i’s subjective state space and XCi is his set of signals.

The novelty here is that while the state space is subjective, the DM’s belief

is a projection of the objective distribution p on his subjective state space.

Moreover, unlike the standard Savage model, the stochastic mapping from

the DM’s subjective states to outcomes is affected by the behavior of other

DM types, hence it is an endogenous object. In my opinion, these deviations

from the Savage framework are so drastic that they justify my decision to

avoid the Savage terminology altogether in the paper’s formal exposition.

Example 5.1: Adjusting for an irrelevant variable

This example illustrates the danger of excessive controlling for “pre-treatment”

variables, independently of equilibrium considerations. It is adapted from

Cinelli et al. (2022), a guide to “good and bad controls”that, following Pearl

(2009), makes use of the formalism of directed acyclic graphs (DAGs). Let

t = 0 with certainty, and suppose that the true causal structure underlying

p is given by the DAG

a← x1 → x3 ← x2 → y

All variables take values in {0, 1}; x1 and x2 are uniformly distributed; y = x2

and x3 = x1x2 with certainty; and p(a = x1 | x1) = 1 − ε for all x1, where
ε ≈ 0. The objective causal effect of a on y is null because the DAG includes

no causal path from a to y. Therefore, Ep(y | a = 1) − Ep(y | a = 0) is a

correct formula for the null objective causal effect. In other words, there is

no need to control for any of the x variables.

Suppose, however, that one of the DM types has C = ∅ and D = {3}
– i.e., he does not condition on any variable, while adjusting for x3.5 The

type’s estimated causal effect is∑
x3

p(x3)[Ep(y | a = 1, x3)− Ep(y | a = 0, x3)] (5)

Under the specification of p, we can calculate that p(y = 1 | a, x3 = 1) = 1

5The absence of a direct link from x3 into a in the DAG is consistent with no DM type
conditioning on x3 – i.e., this variable does not enter any data type’s set C.
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for every a, whereas

p(y = 1 | a = 1, x3 = 0) ≈ 0

p(y = 1 | a = 0, x3 = 0) ≈ 1

2

Plugging these values in (5), we obtain a non-null estimated causal effect.

The intuition is as follows. Because x3 is a common consequence of x1 and

x2 (which are correlated with a and y, respectively), it is not necessarily true

that a ⊥ y | x3. Therefore, x3 is a bad control that produces a biased causal
estimate. �

The following definition adapts the concept of ε-equilibrium to the present

setting (the definition of equilibrium is derived from ε-equilibrium, just as

in Section 2).

Definition 4 A strategy profile σ = (σ1, ..., σn) is an ε-equilibrium if for

every i = 1, ..., n and every t, x, a′, σt,i(a′ | x) > ε only if

a′ ∈ arg max
a

 ∑
xDi\Ci

p(x
Di\Ci

| xCi)Ep(y | a, xCi)− θ · 1[a 6= t]


I now extend the notion of vertically ordered types. Define a binary

relation P over data types: iP j if Di ⊇ Cj. The meaning of iP j is that data

type i controls for every variable that type j conditions on. Since Di ⊇ Ci

for every i ∈ N , P is reflexive. Let P ∗ be the asymmetric (strict) part of P

– i.e., iP ∗j if iP j and j /Pi. Following Sen (1969), P is quasitransitive if P ∗

is transitive.

Definition 5 The set N is vertically ordered if the binary relation P is

complete and quasitransitive.

When Ci = Di for every i ∈ N , this definition collapses to Definition 3.
The following observation is standard. We say that type i is P ∗-undominated

in a set of types M , if there is no j ∈M such that jP ∗i.

25



Remark 1 Suppose P is complete and quasitransitive. Then, N can be

partitioned into L classes, N1, ..., NL, such that: (i) N1 consists of all P ∗-

undominated types in N ; and (ii) for every ` > 1, N` consists of all P ∗-

undominated types in N \ (∪h<`Nh).

The partition induced by a complete and quasitransitive P is the ex-

tended model’s analogue of vertical ordering of types.

The following results extend the worst-case analysis of Section 3 (ho-

mogenous preferences).

Proposition 7 Let γ = 0. Suppose N is vertically ordered. Then, the

unique equilibrium is for all DM types to play a = 0 with probability one. In

particular, the DM’s expected welfare loss is zero.

Proposition 8 Let γ = 0. Suppose N is not vertically ordered. Then, for

any θ, β ∈ (0, 1), there exist λ and (p(x, y)) such that Pr(a = 1) > β in some

equilibrium. In particular, when θ ≈ 1, the equilibrium welfare loss can be

arbitrarily close to 1.

The proof of Proposition 7 is by induction on the partition induced by P .

The reasoning is essentially the same as provided by the informal sketch for

Proposition 1. Proposition 8 shows the other side of the “bang-bang”char-

acterization. When N is vertically unordered, the equilibrium requirement

does not constrain the maximal possible welfare loss due to bad controls.

The proof is constructive, involving more elaborate versions of Example 3.2.

In particular, when P is complete but not quasitransitive, the construction

involves three data types.

Thus, as in Section 3, the distinction between type spaces that are ver-

tically ordered and those that are not is crucial for the worst-case analysis.

The contribution of this section is to provide the appropriate extension of

the vertical ordering to settings in which the DM may control for variables

he does not condition on. Extending this analysis to environments with

heterogeneous preferences is an open problem.
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6 Consequential Actions

So far, I have focused on the extreme case in which the DM’s action has no

objective causal effect on the outcome. This facilitated the definition of the

DM’s equilibrium welfare loss due to poor controls, relative to the rational-

expectations benchmark. This section extends the analysis to situations in

which actions have an additively separable causal effect on outcomes. This

kind of separability is commonly assumed in empirical research. Therefore,

it is sensible to assume it in our context as well.

Define an unobservable variable z that takes values in [0, 1]. This variable

is a consequence of (t, x), independently of a, just as y was in the basic model.

The outcome y is purely caused by a and z (i.e., y ⊥ (t, x) | (a, z)), such

that

Ep(y | a, z) = βa+ (1− β)z (6)

where β ∈ (0, 1) quantifies the true causal effect of a on y. The DM is

unaware of the relation (6), nor does he know β. As before, he forms beliefs

by examining the observed joint distribution of a, y, and his set of control

x variables. Nevertheless, we can express type i’s estimated causal effect of

switching from a = 0 to a = 1 on y given x as β + (1− β)∆z
i (x), where

∆z
i (x) =

∑
xDi\Ci

p(xDi\Ci | xCi) [Ep(z | a = 1, xDi)− Ep(z | a = 0, xDi)]

This expression makes use of the extended notion of DM types presented in

Section 5, which allows Di to be a strict superset of Ci. Since z ⊥ a | (t, x),

the equilibrium analysis of ∆z
i (x) and how it relates to the DM’s strategy is

the same as the analysis of ∆i(x) in the previous sections.

It follows that the only thing that needs adjustment is the definition of

the DM’s welfare loss. The optimal rational-expectations action maximizes

βa − θ · 1[a 6= t], because a has no causal effect on z, such that the only

effect of a on y is via the direct channel parameterized by β. Therefore, the

expected welfare loss given a joint distribution p is

γ · p(a = 0 | t = 1) · (θ + β) + (1− γ) · p(a = 1 | t = 0) · (θ − β) (7)

The DM chooses a = 0 at (t = 1, x) only if θ+β ≤ −(1−β)∆z
i (x). Likewise,
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he chooses a = 1 at (t = 0, x) only if θ − β ≤ (1 − β)∆z
i (x). Consequently,

by (7), the upper bounds on the DM’s equilibrium welfare loss are the same

as in Sections 3-4, multiplied by 1− β.

Example 6.1: Extreme sports6

People sometimes evaluate the riskiness of life-style choices by consulting raw

statistics about the prevalence of adverse health outcomes among people

who engage in or refrain from various activities. These statistics can be

confounded by demographic characteristics. In particular, young people may

have a stronger taste for a dangerous activity as well as a lower background

health risk. The following example explores the equilibrium effects of changes

in the fraction of DMs who control for this confounder.

Suppose that a = 1 means that the DM refrains from a potentially plea-

surable, yet risky activity. For the sake of the example, this activity is

extreme sports. The outcome y = 1 represents good health – specifically,

lack of injuries. Let x represent the DM’s age (x = 0 indicates a young DM).

Let t represent the DM’s intrinsic taste for the activity: t = 0 means that

the DM likes extreme sports. Let θ < 1
2
.

The objective distribution p is described as follows. First, p(x = 1) = 1
2
.

Second, p(t = x | x) = q for all x, where q ∈ (1
2
, 1). That is, young (old)

people tend to like (dislike) extreme sports. Finally, let p(y = 1 | a, x) =
1
2
(a+ 1−x). That is, old age and extreme sports increase the propensity for

injuries. The joint distribution p is consistent with the DAG

t ← x

↓ ↙ ↓
a → y

Data type 1 controls for x. This type correctly estimates the causal

health effect of switching from a = 0 to a = 1 to be 1
2
. Since θ < 1

2
, this DM

data type will rationally play a = 1, independently of t and x. Data type 2

does not control for x.7 This DM chooses a to maximize

p(y = 1 | a)− θ · 1[a 6= t] =
1

2
[a+ 1− p(x = 1 | a)]− θ · 1[a 6= t]

6This example is dedicated to Kfir Eliaz.
7Recall that even if people tend to know their age, they may lack statistics about how

age is correlated with a and y, in which case they cannot use the knowledge of their age.
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Let us analyze equilibria in this example.

Claim 2 The rational-choice benchmark can be sustained in equilibrium.

Proof. To prove this claim, recall that data type 1’s strategy is σ1(a = 1 |
t, x) = 1 for all t, x. Denote σ2(a = 1 | t) = αt. Then,

p(x = 1 | a = 1) =
λ1 + λ2[qα1 + (1− q)α0]

2λ1 + λ2[α1 + α0]

p(x = 1 | a = 0) =
1− qα1 − (1− q)α0

2− α1 − α0

First, let us guess

p(x = 1 | a = 1)− p(x = 1 | a = 0) <
1

2
− θ

Then, a = 1 is optimal for data type 2 regardless of t. In this case, we need to

consider perturbed strategies to ensure that p(x = 1 | a = 0) is well-defined.

Since α0 and α1 are arbitrarily close to 1, we obtain p(x = 1 | a = 1) ≈ 1
2
.

We can also set the perturbations such that p(x = 1 | a = 0) = 1
2
. It follows

that it is always possible to sustain the guess in equilibrium, such that the

DM will commit no error.

However, equilibria that exhibit decision errors are also possible.

Claim 3 Assume
θ >

1

2
− 2q − 1

1 + λ1
(8)

Then, there is an equilibrium in which type 2 always plays a = t.

Proof. To verify this claim, let us guess

p(x = 1 | a = 1)− p(x = 1 | a = 0) >
1

2
− θ

Then, data type 2 will play αt ≡ t in equilibrium. Plugging this into the

expressions for p(x = 1 | a), we obtain

p(x = 1 | a = 1)− p(x = 1 | a = 0) =
λ1 + λ2q

2λ1 + λ2
− (1− q)
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Condition (8) means that this expression exceeds 1
2
−θ, thus confirming that

the guess is consistent with equilibrium.

What sustains this equilibrium is the positive correlation between age

and preferences. Young DMs like extreme sports more than old DMs, and

since the DM chooses according to his intrinsic taste with probability λ2 > 0,

there is positive correlation between doing extreme sports and young age.

In turn, this softens the negative correlation between a and y, to an extent

that makes it subjectively optimal for type-2 DMs to follow their taste.

The expected welfare loss in this equilibrium is

1

2
· λ2 · (

1

2
− θ) <

(
q − 1

2

)
λ2

2− λ2

The R.H.S of this inequality represents the maximal welfare loss in this set-

ting. It increases with the fraction of type 2. There are two forces behind this

observation. First, higher λ2 obviously means that there are more DMs in

the population who are prone to error. Second, type-1 DMs do not vary their

behavior with t or x, thus curbing the overall positive correlation between

a and y that leads type-2 DMs to underestimate the health consequences of

his life-style choice. The latter force is a beneficial “equilibrium externality”

that the sophisticated DM type exerts on the naive type: A larger share of

sophisticates implies that naifs commit a smaller error. Put differently, if

public health authorities could somehow “educate”part of the population

to reason better about causality, this would have a “multiplier effect”thanks

to this equilibrium externality.8

7 Related Literature

This paper continues my line of research into the behavioral implications

of flawed causal reasoning (Spiegler 2016,2020). More broadly, the paper

is part of the program of developing equilibrium modeling frameworks with

non-rational expectations. There is also a growing literature on (mostly

Bayesian) learning foundations for equilibrium behavior under misspecified

beliefs (e.g., Heidhues et al. (2018), Esponda et al. (2021), Fudenberg et al.

8There is potentially a third equilibrium in which α1 = 1 and α0 ∈ (0, 1). For brevity,
I omit the characterization of this equilibrium.
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(2021), Bohren and Hauser (2021), Frick et al. (2023), Ba (2024)).

Against this background, this paper introduces several innovations. First,

the problem it poses – quantifying the cost of flawed methods of causal in-

ference from endogenous datasets – is novel. Second, prior work has focused

on DMs who misperceive the causal mapping from actions to consequences,

but fully account for the determinants of actions. In contrast, the DM in

this paper may fail to perceive that observed actions have direct causes that

confound the observed action-consequence relation.9 Moreover, DM types

differ in their ability to account for these causes, via their different sets

of controls. Since this heterogeneity potentially gives rise to more elabo-

rate confounding patterns, it makes the problem of quantifying the decision

costs of bad controls non-trivial. Thus, while the theme that misspecified

beliefs can generate equilibrium effects in single-agent decision problems is

central to the aforementioned literature, the systematic study of equilibrium

effects that arise from DMs’diverse ability to deal with action-consequence

confounding is without precedent.

I now demonstrate how existing modeling frameworks of equilibrium be-

havior under non-rational expectations can be adapted to incorporate the

novel features in this paper. To make the comparison complete, I make use

of the extended formalism of Section 5.

Analogy-based expectations

Jehiel’s (2005) concept of analogy-based expectations equilibrium captures

the idea that players’perception of other players’strategies is coarse. In the

present context, we can regard y as the action taken by a fictitious opponent

of the DM after observing the history (a, t, x1, ..., xn). In this context, xCi
is type i’s information set, whereas Di determines his “analogy partition”.

Two histories belong to the same partition cell if they share the same value of

xDi . My definition of equilibrium is consistent with Jehiel’s assumption that

type i believes that the fictitious player’s strategy is measurable with respect

to type i’s analogy partition, and that the equilibrium belief is consistent

with the average objective behavior of y conditional on each partition cell.

(A minor difference is that I use trembles to handle null events, whereas

Jehiel relies on the sequential-equilibrium conceptual baggage.)

9Clyde (2023) effectively shares this feature, by assuming that the DM forms equilib-
rium beliefs on the basis of data about proxies of relevant variables (including actions).
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Bayesian networks

The model can also be cast in the Bayesian-network language of Spiegler

(2016). When a has no causal effect on y, the objective distribution p is

consistent with the following DAG:

a ← t → y

↖ ↑ ↗
x

Data types can be described by their subjective causal model. Specifically,

type i’s causal model is given by the DAG

a −→ y

↑ ↗ ↑
xCi −→ xDi\Ci

According to Spiegler (2016), the belief generated by this subjective model

obeys the Bayesian-network factorization formula

p(xCi)p(xDi\Ci | xCi)p(a | xCi)p(y | a, xCi , xDi)

The DM’s perceived causal effect of a on y given xCi is thus given by (4).

Equilibrium in the present model is consistent with the notion of personal

equilibrium in Spiegler (2016), with the modification that the DM’s subjec-

tive causal model itself is random. As a by-product, equilibrium existence

in the present paper can be established using the same (conventional) argu-

ments as in Spiegler (2016).10

Berk-Nash equilibrium

The Bayesian-network framework can be subsumed into the more general

concept of Berk-Nash equilibrium (Esponda and Pouzo (2016)). According

to this concept, a misspecified subjective model is represented by a set of

conditional distributions (mapping from signals and actions to outcomes).

10Previous applications of the Bayesian-network framework contain precedents for some
of this paper’s ingredients. Eliaz et al. (2021a) characterize the worst-case distortion of
pairwise correlations generated by misspecified Gaussian Bayesian networks. Spiegler
(2022) illustrates how equilibrium effects can ameliorate the cost of a reverse-causality
error.
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The DM best-replies to a belief in this set that minimizes a weighted version

of Kullback-Leibler divergence with respect to the objective conditional dis-

tribution. Proper adaptation of this concept to the present context requires

the weights to be given by the DM’s ex-ante equilibrium strategy.

The reason I chose to present the model in a new language is threefold.

First, it is relatively simple and self-contained. Second, it does not require

readers to absorb modified versions of previous, possibly unfamiliar frame-

works. Third, by drawing a connection with the familiar and intuitive notion

of “bad controls” and the work habits of empirical researchers, this paper

will hopefully help inspiring new research about how everyday DMs perform

causal inference.

DMs who form wrong beliefs because they ignore confounding effects

(involving variables other than the DM’s action) appear in several exam-

ples in Spiegler (2016,2020). Confounder neglect is related to the error of

drawing inferences from selective datasets without internalizing their selec-

tiveness. In Esponda (2008), buyers infer product quality from a sample

of observed trades, without realizing that it results from sellers’adversely

selective response to market prices. In Esponda and Pouzo (2017), voters

evaluate political candidates according to their historical record as elected

policy makers, without taking into account the information conveyed by

their election. In Jehiel (2018), entrepreneurs evaluate investments based

on a dataset of implemented projects, without realizing they result from

selectively positive signals.

Empirical work has begun to examine how misspecified causal beliefs

affect individual behavior. Oster (2020) presents evidence that naive ob-

servational estimates of food supplements’ health benefits may be partly

driven by selection. The reason is that individuals who adopt a recommen-

dation to consume supplements – based on potentially spurious correlation

between action and consequence – are also likely to engage in other health-

improving behavior, thus augmenting the spurious correlation that gave rise

to the recommendation in the first place. Angrisiani et al. (2024) present

an empirical study of the role of false causal narratives regarding preven-

tive measures in the context of Covid-19. Ambuehl and Thysen (2024) and

Charles and Kendall (2024) study causal reasoning about observational data

using an experimental methodology.
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Worst-case analysis in this paper can be reinterpreted through the prism

of the small literature on persuading boundedly rational agents (e.g., Glazer

and Rubinstein (2012), Galperti (2019), Hagenbach and Koessler (2020),

Schwartzstein and Sunderam (2021), Eliaz et al. (2021b), and De Barreda

et al. (2022)). Under this interpretation, the DM is the receiver who takes

an action. The sender’s objective is to maximize the probability that the

receiver plays a 6= t. Toward this end, he designs a distribution over the

variables the receiver observes as signals. This is a seemingly conventional

“information design” tool. Its unconventional aspect is that it also deter-

mines the statistical data that the receiver uses to form his belief. Worst-case

analysis can thus be viewed as finding the sender’s optimal information-cum-

data provision strategy.

8 Conclusion

When DMs draw causal inferences from observed correlations, they may

commit errors if they fail to control for an appropriate set of confounding

variables. This paper examined a model of this common error, when DMs

rely on endogenous datasets and may differ in their sets of control variables.

Since DMs’ causal inferences determine how they vary their actions with

exogenous variables, and since this response in turn shapes the very correla-

tions from which DMs draw their inferences, equilibrium analysis is required

to evaluate the decision cost of erroneous causal inference from endogenous

datasets.

The general insight that emerged from this analysis was that when DM

types are “vertically” differentiated in terms of their sets of controls, the

equilibrium cost of bad controls falls significantly below the non-equilibrium

benchmark; sometimes it completely vanishes. I substantiated the role of

vertical differentiation by showing that the upper bound on the welfare loss

is significantly higher when types are not vertically ordered; sometimes it co-

incides with the non-equilibrium benchmark. Of course, worst-case analyses

have a built-in limitation: The worse the worst case gets, the less useful it

is. From this point of view, the results on vertically ordered types are more

meaningful, and the role of the other results is to put them in perspective.

The analysis in this paper was entirely restricted to binary decision prob-
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lems. As mentioned in the Introduction, this is a reasonable restriction, given

the ubiquity of binary treatments in empirical causal-inference studies. Note

that the results of Section 3 (and by extension, Proposition 7 in Section 5)

are immediately extendible to arbitrary finite decision problems. In contrast,

the analysis in Section 4 is tied to the binary specification.

On a speculative note, the results on vertically ordered type spaces sug-

gest that failure to use proper controls, which is a grave error for academic

researchers, may not be such a big problem for everyday decision-making,

thanks to corrective equilibrium forces. Could this be one of the reasons

that causal-inference errors are so widespread in real life?
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Appendix: Proofs
The proofs are presented out of order, because Propositions 1 and 2 are

special cases of Propositions 7 and 8.

Proposition 7

I will show that a = 0 with probability one in equilibrium. The proof

is by induction with respect to the partition induced by P . Consider an

arbitrary type i in the top layer N1. This type satisfies Di ⊇ Cj for all

j ∈ N . Hence, there is no x variable outsideDi that any DM type conditions

his action on. Since t is constant, this means that y ⊥ a | xDi – i.e.,

p(y | a, xDi) = p(y | xDi). Formula (4) then implies that ∆i(x) = 0. It

follows that in equilibrium, type i plays a = 0 for all x.

Suppose the claim holds for all types in the top m layers in the partition,

and now consider an arbitrary type i in the (m+ 1)-th layer. By definition,

Di ⊇ Cj for every type j outside the top m layers of the partition. As to

types in the top m layers, by the inductive step these types play a constant

action a = 0 in any equilibrium – i.e., there is no variation in their action.

It follows that if p is consistent with equilibrium, then y ⊥ a | xDi . Formula
(4) then implies ∆i(x) = 0. It follows that in equilibrium, type i plays a = 0

for all x. �

Proposition 8

Suppose first that P is incomplete. Then, there exist two types, denoted

conveniently 1 and 2, such that C1 \D2 and C2 \D1 are non-empty. Select

two variables in C1 \ D2 and C2 \ D1, and denote them 1 and 2 as well,

respectively. Suppose that λ1 = λ2 = 1
2
. Construct p as follows. First, let

x1, x2, y ∈ {0, 1}, and

p(x1 = 1, x2 = 1) = 1− ε
p(x1 = 0, x2 = 1) = p(x1 = 1, x2 = 0) =

ε

2

where ε > 0 is arbitrarily small. Second, let p(y = 1 | x1, x2) = x1x2. Thus,

x1 and x2 are the only x variables that determine y, and so we can afford

to ignore all other x variables. Given this specification of λ and p(x, y),

we can construct an equilibrium in which for each type i = 1, 2, ai = xi
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with probability one – exactly as in Example 3.1 – such that Pr(a = 1) is

arbitrarily close to one.

Now suppose that P is complete but not quasitransitive. This means

that P ∗ must have a cycle of length 3 – that is, we can find three types,

denoted 1, 2, 3, such that 1P ∗2, 2P ∗3 and 3P ∗1 – that is, D1 ⊇ C2, D2 ⊇ C3

and D3 ⊇ C1. Since P ∗ is asymmetric by definition, this means that for

each of the three types i = 1, 2, 3, there is a distinct variable in {1, ..., K},
conveniently denoted i as well, such that 1 ∈ C1 \ D2, 2 ∈ C2 \ D3 and

3 ∈ C3 \D1. Suppose λ1, λ2, λ3 > 0 and λ1 + λ2 + λ3 = 1. Let x1, x2, x3, y ∈
{0, 1}. Construct p as follows: First,

p(x1 = 1, x2 = 1, x3 = 1) = 1− ε

and

p(xi = 0, xj = xk = 1) =
ε

3

for every i = 1, 2, 3 and j, k 6= i, where ε > 0 is arbitrarily small. Second, let

p(y = 1 | x1, x2, x3) = x1x2x3. Thus, x1, x2, x3 are the only x variables that

determine y, and so we can afford to ignore all other x variables. Suppose

each type i = 1, 2, 3 plays a = xi with probability one. Using essentially the

same calculation as in the case of incomplete P , we can see that for every

i = 1, 2, 3, ∆i(xi = 0) = 0, whereas ∆i(xi = 1) → 1 as ε → 0. Therefore,

the postulated strategy profile is an equilibrium. �

The two following proofs make use of the following notation: For every

x and every C ⊆ {1, ..., K}, denote γ(x) = p(t = 1 | x) and γ(xC) = p(t =

1 | xC).

Lemma 1

By assumption, C1 ⊃ · · · ⊃ Cn. The proof proceeds stepwise.

Step 1: Deriving an expression for ∆i(x)

Proof : Since y ⊥ (a, x) | t, we can write

p(y | a, xCi) =
∑
t

p(t | a, x
Ci

)p(y | a, xCi , t) =
∑
t

p(t | a, xCi)p(y | t)

39



Plugging this in (1), we obtain

∆i(x) = [p(t = 1 | a = 1, xCi)− p(t = 1 | a = 0, xCi)][δ1 − δ0] (9)

We have thus derived an expression for ∆i(x). �

Step 2: For every x, ∆1(x) ≥ 0 and σt=1,1(a = 1 | xC1) = 1.

Proof : For every a, the terms p(t = 1 | a, xCi) in (9) can be written as

γ(xCi)p(a | t = 1, xCi)

γ(xCi)p(a | t = 1, xCi) + (1− γ(xCi))p(a | t = 0, xCi)
(10)

Consider the terms p(a | t, xC1) in (10). Note that

p(a | t, xC1) =
∑
x−C1

p(x−C1 | t, xC1)p(a | t, xC1 , x−C1 ) (11)

By definition, C1 ⊃ Cj for every j > 1. This means that no data type j

conditions his actions on x−C1 . Therefore, (11) is equal to

n∑
j=1

λjσt,j(a | xCj)

By the DM’s preferences, σt=1,i(a = 1 | xCi) ≥ σt=0,i(a = 1 | xCi) in any
equilibrium, for every i, x. It follows that p(a = 1 | t = 1, xC1) ≥ p(a =

1 | t = 0, xC1) for every xC1 . A simple calculation then confirms that the

expression (10) is weakly increasing in a for i = 1. Since δ1 − δ0 ≥ 0,

∆1(x) ≥ 0. �

Step 3: Extending Step 2 to all data types
Proof : The proof is by induction on the data types. Suppose that for every
type j = 1, ...,m, ∆j(x) ≥ 0 and σt=1,j(a = 1 | xCj) = 1. (Step 2 established

this for j = 1.) Now consider type i = m+ 1. We can write

p(a | t, xCi) =
∑
x−Ci

p(x−Ci | t, xCi)
[∑
j≤m

λjσt,j(a | xCj) +
∑
j>m

λjσt,j(a | xCj)
]

By the inductive step,

σt=1,j(a = 1 | xCj) = 1 ≥ σt=0,j(a = 1 | xCj)
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for every j ≤ m. By definition, Cj ⊆ Ci for every j > m, hence σt,j(a | xCj)
is constant in x−Ci . Therefore,

p(a = 1 | t = 1, xCi) =
∑
j≤m

λj · 1 +
∑
j>m

λjσt=1,j(a | xCj)

We already observed that σt=1,j(a = 1 | xCj) ≥ σt=0,j(a = 1 | xCj) for every
xCj . It follows that

p(a = 1 | t = 1, xCi) =
∑
j≤m

λj · 1 +
∑
j>m

λjσt=1,j(a | xCj)

≥
∑
x−Ci

p(x−Ci | t, xCi)
[∑
j≤m

λjσt=0,j(a | xCj) +
∑
j>m

λjσt=0,j(a | xCj)
]

= p(a = 1 | t = 0, xCi)

As in the proof of Step 2, applying this inequality to (10) implies that

∆i(x) ≥ 0 and σt=1,i(a = 1 | xCi) = 1. �

Comment: Lemma 1 and Simpson’s paradox

The key to the lemma’s proof is showing that p(a = 1 | t = 1, xCi) ≥
p(a = 1 | t = 0, xCi) for every xCi – i.e., that the DM’s average behavior

conditional on xCi is increasing in t, for every x, i. A priori, this need not

be the case, despite the fact that p(a = 1 | t, x) =
∑

i λiσt=0,i(a = 1 | xCi)
is increasing in t for every x. The reason is that p(a | t, xCi) marginalizes
p(a = 1 | t, x) over x−Ci . Monotonicity of conditional probabilities is not

always preserved under marginalization – a property known as Simpson’s

paradox (see Pearl (2009)). The challenge of the lemma’s proof is to ensure

that Simpson’s paradox is moot in the present context. �

Proposition 3

The proof proceeds in two steps.

Step 1: An upper bound on the expected equilibrium welfare loss given x

Proof : We have established that in any equilibrium, all data types play
a = 1 with probability one when t = 1. Therefore, they only commit an error

if they play a = 1 with positive probability when t = 0. Fix the realization

of x. Let i(x) be the lowest-indexed type j for which σt=0,j(a = 1 | xCj) > 0.
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Then, the DM’s expected welfare loss given x is

θ(1− γ(x))

n∑
j=i(x)

λjσt=0,j(a = 1 | xCj)

In order for type i(x) to play a = 1 given x and t = 0, it must be the case

that θ ≤ ∆i(x)(x). By Lemma 1, σt=1,j(a = 1 | xCj) = 1 for all j, hence

p(a = 1 | t = 1, xCi(x)) = 1. Plugging this identity into (9)-(10) and recalling

that 0 ≤ δ1 − δ0 ≤ 1, we obtain

∆i(x)(x) ≤
γ(xCi(x))

γ(xCi(x)) + (1− γ(xCi(x)))p(a = 1 | t = 0, xCi(x))

Since Cj ⊆ Ci for every j for which σt=0,j(a = 1 | xCj) > 0, it follows

that none of these types j condition on x−Ci(x). Therefore,

p(a = 1 | t = 0, xCi(x)) =
n∑

j=i(x)

λjσt=0,j(a = 1 | xCj)

Denote this quantity by α. This means that the DM’s expected welfare loss

given x is at most

γ(xCi(x))

γ(xCi(x)) + (1− γ(xCi(x)))α
· (1− γ(x)) · α

This expression attains its maximal value when α = 1. Therefore, the fol-

lowing expression

(1− γ(x))γ(xCi(x)) = (1− γ(x)) ·
∑
x′

p(x′ | x′Ci(x) = xCi(x))γ(x′)

is an upper bound on the DM’s expected welfare loss given x. �

Step 2: Deriving the upper bound on the DM’s ex-ante expected equilibrium
welfare loss

Proof : By Step 1, the ex-ante welfare loss is at most∑
x

p(x)(1− γ(x)) ·
∑
x′

β(x′, x)γ(x′) (12)
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where β(x′, x) = p(x′ | x′Ci(x) = xCi(x)). The coeffi cients β(·) constitute a
system of convex combinations. Expression (12) is a concave function of

(γ(x))x. By Jensen’s inequality, it attains a maximum when γ(x) = γ for

all x, such that the upper bound on the DM’s expected equilibrium welfare

loss is γ(1− γ). �

Proposition 4

I begin by introducing a few pieces of notation, First, denote

c =
γ(1− θ)
θ(1− γ)

By assumption, c ∈ (0, 1). By Lemma 1, the DM always plays a = 1 at

t = 1. Adopting the notation of Example 4.2, let α1(x) denote data type 1’s

probability of playing a = 1 at t = 0, and let α2 denote type 2’s probability

of playing a = 1. Finally, denote qt(x) = p(x | t). The proof proceeds
stepwise.

Step 1: Expressing equilibrium conditions in terms of α

Proof : Following the same arguments as in Examples 2.1 and 4.2, we can
write the data types’estimated causal effects as follows:

∆1(x) =
γq1(x)

γq1(x) + (1− γ)q0(x)[λ1α1(x) + λ2α2]

∆2 =
γ

γ + (1− γ)[λ1
∑

x q0(x)α1(x) + λ2α2]

Recall that playing a = 1 at t = 0 and x is optimal only if ∆i(x) ≥ θ.

Therefore, α1(x) > 0 only if

p(a = 1 | t = 0, x) = q0(x)[λ1α1(x) + λ2α2] ≤ cq1(x) (13)

(where α1(x) = 1 if the inequality is strict), and α2 > 0 only if

p(a = 1 | t = 0) = λ1
∑
x

q0(x)α1(x) + λ2α2 ≤ c (14)

(where α2 = 1 if the inequality is strict). �

Step 2: In equilibrium, p(a = 1 | t = 0) ≤ c.
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Proof : Assume there is an equilibrium such that p(a = 1 | t = 0) > c.

Then, ∆2 < θ and α2 = 0. Since ∆2 is a weighted average of all ∆1(x)’s,

there is some x for which ∆1(x) < θ and therefore, α1(x) = 0. But this

means that for this value of x, the L.H.S of (13) is zero, hence the inequality

is strict, implying α1(x) = 1, a contradiction. �

Step 3: In equilibrium, p(a = 1 | t = 0) is uniquely determined.

Proof : Assume the contrary – i.e., there exist two equilibria, represented by

α and α′, respectively, that induce different conditional action probabilities,

p(a = 1 | t = 0) < p′(a = 1 | t = 0). By Step 2, p(a = 1 | t = 0) < c.

Therefore, α2 = 1 ≥ α′2. Since (14) is the sum of all (13), there must be

some x for which

λ1α1(x) + λ2α2 < λ1α
′
1(x) + λ2α

′
2

and α1(x) < α′1(x). In particular, this means that α′1(x) > 0, hence (13)

holds for α′. But then it follows that (13) holds strictly for α, such that

α1(x) = 1, a contradiction. �

Step 4: The equilibrium level of p(a = 1 | t = 0) weakly increases with λ2.

Proof : Assume the contrary. Then, there exist λ2 ∈ (0, 1) and λ′2 = λ2 + ε,

where ε > 0 is arbitrarily small, such that the conditional action probabilities

that these two values induce satisfy p′(a = 1 | t = 0) < p(a = 1 | t =

0). Therefore, (14) holds strictly under λ′2, which means that α
′
2 = 1. In

addition, there is x for which

λ′1α
′
1(x) + λ′2α

′
2 < λ1α1(x) + λ2α2

Suppose α′1(x) ≥ α1(x). Then,

(λ1 − ε)α1(x) + (λ2 + ε) · 1 < λ1α1(x) + λ2α2

Since ε is arbitrarily small, this leads to a contradiction. Therefore, it must

be the case that α′1(x) < α1(x). In particular, this means that α1(x) > 0,

hence (13) holds for α under λ2. But then it follows that (13) holds strictly

for α′ under λ′2 such that α
′
1(x) = 1, a contradiction. �
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Proposition 5

(i) Deriving the upper bound
Let γ ≥ 1

2
, without loss of generality, such that max{γ, 1− γ} = γ. Suppose

there is an equilibrium in which the DM’s expected welfare loss exceeds γ.

To reach a contradiction, the proof proceeds stepwise.

Step 1: Deriving a necessary condition
Proof : If the expected equilibrium welfare loss exceeds γ, then p(a = 1 |
t = 0) > 0. Thus, there exist x and i such that σt=0,i(a = 1 | x) > 0. Denote

X∗i = {x | σt=0,i(a = 1 | x) > 0}

Define

Bt(x, i) =

{ ∑
x′|x′Ci=xCi

p(x′ | t)p(a = 1 | t, x′) if X∗i 6= ∅
0 if X∗i = ∅

Note that whether x ∈ X∗i only depend on xCi . Likewise, Bt(x, i) is effec-
tively a function of xCi .

By the equilibrium condition, every x ∈ X∗i must satisfy

p(t = 1 | a = 1, xCi)− p(t = 1 | a = 0, xCi) ≥ p(t = 1 | a = 1, xCi)

=
γB1(x, i)

γB1(x, i) + (1− γ)B0(x, i)
≥ θ

which can be written equivalently as

B0(x, i) ≤
γ(1− θ)
θ(1− γ)

B1(x, i) (15)

Summing Bt(x, i) over xCi yields

B̄t(i) =
∑
x∈X∗i

p(x | t)p(a = 1 | t, x) (16)

Performing this summation over xCi on both sides of (15) implies

B̄0(i) ≤
γ(1− θ)
θ(1− γ)

B̄1(i)
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for every i for which X∗i 6= ∅. (Note that B̄t(i) = 0 when X∗i = ∅.) It follows
that a necessary condition for the welfare loss to exceed γ is

max
i
B̄0(i) ≤

γ(1− θ)
θ(1− γ)

max
i
B̄1(i) (17)

Note that

p(a = 1 | t, x) =

n∑
j=1

λjσt,j(a = 1 | x)

Using this observation and (16), we can reformulate (17) as follows. Every

x is assigned a subset of types M(x) = {i | x ∈ X∗i }. The joint distribution
p over (t, x) and the strategy profile σ induce a distribution µ over M , such

that

µ(M) = p({i | x ∈ X∗i } = M | t = 0)

Denote

λ∗j = λj
∑
x

p(x | t = 0, x ∈ X∗j )σt=0,j(a = 1 | x)

Then, (17) can be rewritten as

max
i

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≤
γ(1− θ)
θ(1− γ)

max
i
B̄1(i) (18)

This inequality is a necessary condition for the equilibrium welfare loss to

exceed γ. �

Step 2: The following inequality holds:

max
i

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≥
(∑

M

µ(M)
∑
j∈M

λ∗j

)2
(19)

Proof :11 If we prove that

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j∑
k λ
∗
k

≥
(∑

M

µ(M)
∑
j∈M

λ∗j∑
k λ
∗
k

)2

then this will immediately imply (19) because
∑

k λ
∗
k ≤ 1. Therefore, we can

assume without loss of generality that
∑

j λ
∗
j = 1. Moreover, I will prove a

11This proof is due to Omer Tamuz.
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more demanding inequality:

∑
i

λ∗i
∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≥
(∑

M

µ(M)
∑
j∈M

λ∗j

)2
(20)

The L.H.S of this inequality can be written equivalently as

∑
M

µ(M)
∑
i∈M

λ∗i
∑
j∈M

λ∗j =
∑
M

µ(M)

(∑
j∈M

λ∗j

)2

Denote

z(M) =
∑
j∈M

λ∗j

We can regard z(M) as a real-valued random variable whose distribution is

determined by the distribution µ. The expression

∑
M

µ(M) (z(M))2 −
(∑

M

µ(M)z(M)

)2

is the variance of this random variable, which is non-negative by definition.

This proves (20), and consequently the result. �

Step 3: Reaching a contradiction
Denote

β = max
i
B̄1(i)

By the definition of B̄1 given by (16), β is a lower bound on Pr(a = 1 | t = 1).

Therefore,

Pr(t = 1, a = 0) ≤ γ − γβ

Furthermore, Pr(a = 1 | t = 0) is by definition∑
x

Pr(x | t = 0) Pr(a = 1 | t = 0, x) =
∑
M

µ(M)
∑
j∈M

λ∗j

Applying Step 2, the DM’s expected equilibrium welfare loss is bounded

from above by

θ ·
[
γ − γβ + (1− γ)

√
γ(1− θ)β
θ(1− γ)

]
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which by assumption exceeds γ. Rewriting this inequality as

θ ·
[
γ − γβ +

√
γ(1− γ)(1− θ)β

θ

]
− γ > 0

and regarding it as a quadratic function of
√
β, we can check that this

inequality has no solution whenever γ > 1
5
, a contradiction. �

(ii) Implementing the upper bound
Since P is incomplete, K ≥ 2. Moreover, there exist two data types, 1 and

2, and two exogenous variables, conveniently denoted x1 and x2, such that

1 ∈ C1\C2 and 2 ∈ C2\C1. Suppose λ1+λ2 = 1. Without loss of generality,

let γ ≥ 1
2
, such that max{γ, 1 − γ} = γ. Suppose that x1, x2 ∈ {0, 1,#}.

Construct the following distribution over triples (t, x1, x2):

Pr t x1 x2

β 1 1 1

β2 0 1 0

β2 0 0 1

1− γ − 2β2 0 # #

γ − β 1 0 0

where β is arbitrarily small. Suppose that p is constant over the other x vari-

ables, such that they can be ignored. Complete the exogenous components

of p by letting δ1 = 1 and δ0 = 0. Since there are no relevant x variables

other than x1 and x2, we can set without loss of generality C1 = {1} and
C2 = {2}.
Let each type i play ai = xi with probability one whenever xi ∈ {0, 1}.12

In addition, suppose each type i plays a = 0 with probability 1 − ε when

xi = #, where ε is arbitrarily small. Let us calculate the terms in∆1(x1 = 1):

p(t = 1 | a = 1, x1 = 1) =
β

β + λ1β
2 ≈ 1

p(t = 1 | a = 0, x1 = 1) = 0

12This involves some imprecision: The definition of ε-equilibrium requires the DM’s
strategy to be fully mixed. I chose to include no perturbation when xi = 0, 1 in order to
clarify the role of trembles when xi = #. This imprecision can be fixed by introducing
trembles on the order of ε2 when xi = 0, 1.
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such that ∆1(x1 = 1) ≈ 1. Let us now calculate the terms in ∆1(x1 = 0):

p(t = 1 | a = 1, x1 = 0) = 0

p(t = 1 | a = 0, x1 = 0) =
γ − β

γ − β + λ1β
2 ≈ 1

such that ∆1(x1 = 0) ≈ −1. It follows that ∆1(x1 = 1) > θ and ∆1(x1 =

0) < −θ, such that type 1 strictly prefers to play ai = xi for all xi ∈ {0, 1}.
This is consistent with the postulated strategy.

Finally, note that p(t = 1 | a, x1 = #) = 0 for both a = 0, 1, hence

∆1(x1 = #) = 0. It is therefore optimal for type 1 to play a = 0 when x1 =

#. Since he follows this prescription with probability 1 − ε, this completes
the confirmation that type 1’s behavior is consistent with ε-equilibrium. By

symmetry, the same calculation holds for type 2. We have thus constructed

an ε-equilibrium in which the DM commits an error with probability arbi-

trarily close to γ. Since θ can be arbitrarily close to 1, this completes the

proof. �

Proposition 6

Since P is incomplete, K ≥ 2. Moreover, there exist two data types, 1 and

2, and two exogenous variables, conveniently denoted x1 and x2, such that

1 ∈ C1 \ C2 and 2 ∈ C2 \ C1. Let λ1 = λ2 = 0.5. Construct a distribution

p over t, x1, x2, y given by the following table (suppose that p is constant

over the other x variables, such that they can be ignored), where β > 0 is

arbitrarily small:

p(t, x1, x2, y) t x1 x2 y

1− γ − β 0 1 1 1

γ − β 1 0 0 1

β 0 1 0 0

β 1 0 1 0

Suppose data type i plays ai ≡ xi. Let us calculate ∆1(x1) for each x1.

First,

p(y = 1 | a = 1, x1 = 1) =
1− γ − β

1− γ − β + β · 0.5 ≈ 1

p(y = 1 | a = 0, x1 = 1) = 0
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where the second equation holds because the combination of a = 0 and

x1 = 1 occurs only when x2 = 0, in which case y = 0 with certainty.

Second,

p(y = 1 | a = 0, x1 = 0) =
γ − β

γ − β + β · 0.5
p(y = 1 | a = 1, x1 = 0) = 0

where the second equation holds because the combination of a = 1 and

x1 = 0 occurs only when x2 = 1, in which case y = 0 with certainty.

Plugging these terms into the definition of ∆1(x1) yields ∆1(x1 = 1) ≈
1 and ∆1(x1 = 0) ≈ −1. The calculation for type 2 is identical due to

symmetry. Therefore, for every θ < 1, we can set β such that each data

type i will indeed prefer to play a ≡ xi. Furthermore, for both types i,

xi = 1− ti with probability arbitrarily close to one. Therefore, the DM plays

a = 1 − t with arbitrarily high probability, such that the expected welfare
loss is arbitrarily close to one. �
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